如圖,四棱錐中,底面ABCD是菱形,SA=SD=
39
AD=2
3
,且S-AD-B大小為120°,∠DAB=60°.
(1)求異面直線SA與BD所成角的正切值;
(2)求證:二面角A-SD-C的大。
(1)過A作AOBD交CD的延長線于點O,連接BO交AD于點E,再連接OS,
∴∠SAO是異面直線SA與所成的角.…(2分)
∵OABD是平行四邊形,∴E是AD的中點.
∵SA=SD=
39
,∴SE⊥AD,
又∵底面ABCD是菱形,并且∠DAB=60°,
∴BE⊥AD,
∴∠SEB是二面角S-AD-B的平面角,即∠SEB=120°,
∴∠SEO=60°.…(4分)
∵SA=SD=
39
,AD=2
3
,
∴SE=6,OE=BE=3,
∴在△SEO中由余弦定理可得:SO2=SE2+OE2-2SE•OE•cos60°⇒SO=3
3

在△SOA中,SO=3
3
,SA=
39
,OA=2
3
,SO2+OA2=SA2⇒SO⊥OA
,
∴tan∠SAO=
OS
OA
=
3
3
2
3
=
3
2
;…(6分)
所以異面直線SA與BD所成角的正切值為
3
2

(2)在△SOE中,SO=3
3
,SE=6,OE=3,SO2+OE2=SE2⇒SO⊥OE

由(1)可得:在△SOA中,SO⊥OA,
∴SO⊥平面ABCD,SO?平面SOC
故平面SOC⊥平面ABCD,…(8分)
過A作AF⊥OD,

∴AF⊥平面SOD,
作AN⊥SD,并且交SD與點N,連FN,
∴由三垂線定理可得:FN⊥SD,
∴根據(jù)二面角的平面角的定義可得:∠FNA為二面角A-SD-O的平面角…(10分)
由題意可得:AF=ADsin60°=3,
在△SAD中根據(jù)等面積可得:
1
2
×AD×SE=
1
2
×SD×AN
,即
1
2
×2
3
×6=
1
2
×
39
×AN
,
所以AN=
12
3
39
=
12
13
13

所以sin∠FNA=
AF
AN
=
3
12
13
13
=
13
4

故二面角A-SD-C的大小為π-arcsin
13
4
.…(12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,直三棱柱ABC-A1B1C1中,AC=BC=1,∠ACB=90°,點D為AB的中點.
1)求證:BC1面A1DC;
2)求棱AA1的長,使得A1C與面ABC1所成角的正弦值等于
2
15
30

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知菱形ABCD的邊長為2,對角線AC與BD交于點O,且∠ABC=120°,M為BC的中點.將此菱形沿對角線BD折成二面角A-BD-C.
( I)求證:面AOC⊥面BCD;
( II)若二面角A-BD-C為60°時,求直線AM與面AOC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


如圖,已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD繞CD旋轉(zhuǎn)至
A′CD,使點A'與點B之間的距離A′B=
3

(1)求證:BA′⊥平面A′CD;
(2)求二面角A′-CD-B的大;
(3)求異面直線A′C與BD所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

二面角α-EF-β的大小為120°,A是它內(nèi)部的一點AB⊥α,AC⊥β,B,C分別為垂足.
(1)求證:平面ABC⊥β;
(2)當AB=4cm,AC=6cm,求BC的長及A到EF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD繞CD旋轉(zhuǎn)至A′CD,使A′B=
3

(1)求證:BA′⊥面A′CD;
(2)求異面直線A′C與BD所成角的余弦值.
(3)(理科做)求二面角A′-CD-B的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如果正三棱錐的側(cè)面均為直角三角形,側(cè)面與底面所成的角為α,則α的值是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2.E是CC1的中點,
(1)求銳二面角D-B1E-B的余弦值.
(2)試判斷AC與面DB1E的位置關系,并說明理由.
(3)設M是棱AB上一點,若M到面DB1E的距離為
21
7
,試確定點M的位置.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,三棱柱ABC-A′B′C′的所有棱長都相等,側(cè)棱與底面垂直,M是側(cè)棱BB′的中點,則二面角M-AC-B的大小為( 。
A.30°B.45°C.60°D.75°

查看答案和解析>>

同步練習冊答案