函數(shù)f(x)=loga(1-x)+loga(x+3),(0<a<1).
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為-2,求a的值.
分析:(1)根據(jù)函數(shù)的結(jié)構(gòu),真數(shù)大于零求兩部分交集.
(2)根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性判斷函數(shù)取得最小值時(shí)x的值,列出關(guān)于a的方程,解出即可.
解答:[解析](1)要使函數(shù)有意義:需滿足
1-x>0
x+3>0
,解得:-3<x<1,
所以函數(shù)的定義域?yàn)椋?3,1).
(2)因?yàn)?<a<1,-3<x<1,
∴0<-(x+1)2+4≤4,
所以f(x)=loga(1-x)+loga(x+3)=loga[-(x+1)2+4]≥loga4,
由loga4=-2,得a-2=4,
∴a=
1
2
點(diǎn)評(píng):本題考察函數(shù)定義域的求法、對(duì)數(shù)的運(yùn)算性質(zhì)、對(duì)數(shù)函數(shù)的單調(diào)性,考察較多,但較為簡(jiǎn)單,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、設(shè)函數(shù)f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,則f(x12)+f(x22)+…f(x102)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是減函數(shù),則實(shí)數(shù)a的范圍是( 。
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log 2(x2-x-2)
(1)求f(x)的定義域;
(2)當(dāng)x∈[3,4]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有三個(gè)命題:“①0<
1
2
<1.②函數(shù)f(x)=log 
1
2
x是減函數(shù).③當(dāng)0<a<1時(shí),函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時(shí),其“小前提”是
(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•茂名二模)設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=log 
1
2
x為(0,+∞)上的高調(diào)函數(shù);
②函數(shù)f(x)=sinx為R上的高調(diào)函數(shù);
③如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞);
其中正確的命題的個(gè)數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案