16.若f(x)=-x,g(f(x))=2x+x2,則g(-1)=3.

分析 根據(jù)g(-x)的解析式,將x換為1,求出g(-1))的值即可.

解答 解:若f(x)=-x,
則g(f(x))=g(-x)=2x+x2
則g(-1)=2+1=3,
故答案為:3.

點(diǎn)評(píng) 本題考查了函數(shù)求值問題,考查函數(shù)的解析式問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若x,y滿足$\left\{\begin{array}{l}y≥1\;\\ y≤x-1\;\\ x+y≤m\;\end{array}\right.$且z=x2+y2的最大值為10,則m=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=alnx+$\frac{1}{x}$-bx+1.
(1)若2a-b=4,則當(dāng)a>2時(shí),討論f(x)單調(diào)性;
(2)若b=-1,F(xiàn)(x)=f(x)-$\frac{5}{x}$,且當(dāng)a≥-4時(shí),不等式F(x)≥2在區(qū)間[1,4]上有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在極坐標(biāo)系中,已知點(diǎn)A(2,$\frac{π}{2}$),B(1,-$\frac{π}{3}$),圓O的極坐標(biāo)方程為ρ=4sinθ.
(Ⅰ)求直線AB的直角坐標(biāo)方程;
(Ⅱ)求圓O的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知數(shù)列{an}是等比數(shù)列,a1=$\frac{\sqrt{2}}{2}$,a4=2,則a1+a2+…+a10等于(  )
A.$\frac{31\sqrt{2}}{2}$+31B.31$\sqrt{2}$+31C.80D.$\frac{5\sqrt{2}}{2}$+80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.Sn是數(shù)列{an}的前n項(xiàng)和,Sn=3an-2a1,a3=$\frac{1}{4}$,bn=anlnan,則數(shù)列{bn}的最小項(xiàng)是( 。
A.第3項(xiàng)B.第4項(xiàng)C.第5項(xiàng)D.第6項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{3x-y+2≥0}\\{x-2y-1≤0}\\{2x+y-2≤0}\end{array}\right.$,則z=x-3y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)中為奇函數(shù)的是( 。
A.y=x+cosxB.y=x+sinxC.$y=\sqrt{x}$D.y=e-|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=1nx+2x-6的零點(diǎn)在區(qū)間($\frac{k}{2}$,$\frac{k+1}{2}$)(k∈Z)內(nèi),那么k=5.

查看答案和解析>>

同步練習(xí)冊(cè)答案