如果直線l在平面α外,那么一定有( 。
A、?P∈l,P∈α
B、?P∈l,P∈α
C、?P∈l,P∉α
D、?P∈l,P∉α
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專題:操作型,空間位置關(guān)系與距離
分析:直由題意,直線l在平面α外,可得P與α相交或平行,即可得出結(jié)論.
解答: 解:∵直線l在平面α外,∴P與α相交或平行.
∴P∈l,P∉α,
故選:D.
點(diǎn)評(píng):本題考查線面位置關(guān)系,考查點(diǎn)線、點(diǎn)面位置關(guān)系,確定P與α相交或平行是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
16x+7
4x+4
,數(shù)列{an},{bn}滿足a1>0,b1>0,an=f(an-1),bn=f(bn-1),n=2,3…
(Ⅰ)若a1=3,求a2,a3;
(Ⅱ)求a1的取值范圍,使得對(duì)任意的正整數(shù)n,都有an+1>an;
(Ⅲ)若a1=3,b1=4,求證:0<bn-an
1
8n-1
,n=1,2,3…

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的k值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,定義兩點(diǎn)P(x1,y1),Q(x2,y2)之間的“直角距離”為d(P,Q)=|x1-x2|+|y1-y2|.現(xiàn)有下列命題:
①已知P(1,3),Q(sin2α,cos2α)(α∈R),則d(P,Q)為定值;
②原點(diǎn)O到直線x-y+1=0上任一點(diǎn)P的直角距離d(O,P)的最小值為
2
2

③若|PQ|表示P、Q兩點(diǎn)間的距離,那么|PQ|≥
2
2
d(P,Q);
④設(shè)A(x,y)且x∈Z,y∈Z,若點(diǎn)A是在過P(1,3)與Q(5,7)的直線上,且點(diǎn)A到點(diǎn)P與Q的“直角距離”之和等于8,那么滿足條件的點(diǎn)A只有5個(gè).
其中的真命題是
 
.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將直線2x-y-4=0繞著其與x軸的交點(diǎn)逆時(shí)針旋轉(zhuǎn)
π
4
得到直線m,則m的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

冬天是感冒傳播的高發(fā)季節(jié),連續(xù)6周中,每周患病發(fā)燒的人數(shù)如表所示,圖為統(tǒng)計(jì)六周發(fā)燒人數(shù)的程序框圖,則圖中判斷框,執(zhí)行框應(yīng)填( 。
周次 1 2 3 4 5 6
發(fā)燒人數(shù) a1 a2 a3 a4 a5 a6
A、i<6;s=s+ai
B、i≤6;s=s+i
C、i≤6;s=s+ai
D、i>6;s=a1+a2+…+ai

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)(3x+5y-4z)7展開式的項(xiàng)數(shù)為(  )
A、21B、28C、36D、45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)橢圓
x2
16
+
y2
25
=1上的點(diǎn)到圓(x+6)2+y2=1上的點(diǎn)的距離的最大值( 。
A、11
B、9
C、
74
D、5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=a,前n項(xiàng)和為Sn,且-a2,Sn,2an+1成等差.
(Ⅰ)試判斷{an}是否成等比數(shù)列,并說明理由;
(Ⅱ)當(dāng)a>0時(shí),數(shù)列{bn}滿足b1=
1
a
,且bn=
an
(an-a)(an+1-a)
(n≥2).記數(shù)列{bn}的前n項(xiàng)和為Tn,求證:1≤aTn<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案