【題目】已知橢圓的左、右焦點分別為,左、右頂點分別為為直徑的圓O過橢圓E的上頂點D,直線DB與圓O相交得到的弦長為.設(shè)點,連接PA交橢圓于點C.
(I)求橢圓E的方程;
(II)若三角形ABC的面積不大于四邊形OBPC的面積,求t的最小值.
【答案】(1) ;(2) .
【解析】試題分析:(1) 由題意,則圓的方程為,又,直線的方程為,直線與圓相交得到的弦長為,則進(jìn)而可得橢圓的方程.(2) 設(shè)直線的方程為,聯(lián)立直線PA和橢圓方程,可得點的坐標(biāo)是,故直線的斜率為, ,所以.將線段BC,OP的長度用t來表示,則 , ,所以,整理得,又, ,所以.
試題解析:(Ⅰ)因為以為直徑的圓過點,所以,則圓的方程為,
又,所以,直線的方程為,直線與圓相交得到的
弦長為,則所以,
所以橢圓的方程為.
(Ⅱ)設(shè)直線的方程為,
由
整理得,
解得: , ,則點的坐標(biāo)是,
故直線的斜率為,由于直線的斜率為,
所以 ,所以.
, ,
所以,
,所以,
整理得,又, ,所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD,PB⊥AC,Q是線段PB的中點. (Ⅰ)求證:AB⊥平面PAC;
(Ⅱ)求證:AQ∥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)觀眾對大型綜藝活動《中國好聲音》的收視情況,隨機(jī)抽取了100名
觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場數(shù)與所對應(yīng)的人數(shù)表:
場數(shù) | 9 | 10 | 11 | 12 | 13 | 14 |
人數(shù) | 10 | 18 | 22 | 25 | 20 | 5 |
將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.
(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料我們能否有95%的把握認(rèn)為“歌迷”與性別有關(guān)?
非歌迷 | 歌迷 | 合計 | |
男 | |||
女 | |||
合計 |
(Ⅱ)將收看該節(jié)目所有場次(14場)的觀眾稱為“超級歌迷”,已知“超級歌迷”中有2名女性,若從“超級歌迷”中任意選取2人,求至少有1名女性觀眾的概率.
0.05 | 0.01 | |
3.841 | 6.635 |
參考公式與數(shù)據(jù): ,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x2+ax﹣ + ,在區(qū)間[0,1]上的最大值是2,求函數(shù)f(x)在區(qū)間[0,1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:若實數(shù)x滿足x2﹣4ax+3a2≤0,其中a>0;命題q:實數(shù)x滿足
(1)若a=1且p∧q為真,求實數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若兩集合A=[0,3],B=[0,3],分別從集合A、B中各任取一個元素m、n,即滿足m∈A,n∈B,記為(m,n), (Ⅰ)若m∈Z,n∈Z,寫出所有的(m,n)的取值情況,并求事件“方程 所對應(yīng)的曲線表示焦點在x軸上的橢圓”的概率;
(Ⅱ)求事件“方程 所對應(yīng)的曲線表示焦點在x軸上的橢圓,且長軸長大于短軸長的 倍”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(),過其焦點作斜率為1的直線交拋物線于, 兩點,且,
(1)求拋物線的方程;
(2)已知動點的圓心在拋物線上,且過點,若動圓與軸交于兩點,且,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com