【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 向量 =(Sn , 1), =(2n﹣1, ),滿足條件 ,
(1)求數(shù)列{an}的通項(xiàng)公式,
(2)設(shè)函數(shù)f(x)=( x , 數(shù)列{bn}滿足條件b1=1,f(bn+1)=
①求數(shù)列{bn}的通項(xiàng)公式,
②設(shè)cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

【答案】
(1)解:由向量 =(Sn,1), =(2n﹣1, ), ,

可得 Sn=2n﹣1,即Sn=2n+1﹣2,

當(dāng)n>1時(shí),an=Sn﹣Sn1=(2n+1﹣2)﹣(2n﹣2)=2n

當(dāng)n=1時(shí),a1=S1=2,滿足上式.

則有數(shù)列{an}的通項(xiàng)公式為an=2n,n∈N*


(2)解:①f(x)=( x,b1=1,f(bn+1)=

可得 = =( ,

即有bn+1=bn+1,可得{bn}為首項(xiàng)和公差均為1的等差數(shù)列,

即有bn=n;

②Cn= = ,前n項(xiàng)和Tn=1 +2( 2+…+(n﹣1)( n1+n( n

Tn=1( 2+2( 3+…+(n﹣1)( n+n( n+1,

相減可得, Tn= +( 2+…+( n1+( n﹣n( n+1

= ﹣n( n+1

化簡(jiǎn)可得,前n項(xiàng)和Tn=2﹣


【解析】(1)運(yùn)用向量共線的坐標(biāo)表示,可得Sn=2n+1﹣2,再由當(dāng)n>1時(shí),an=Sn﹣Sn1 , n=1時(shí),a1=S1 , 即可得到所求通項(xiàng)公式;(2)①運(yùn)用指數(shù)的運(yùn)算性質(zhì)和等差數(shù)列的定義,即可得到所求通項(xiàng)公式;②求得Cn= = ,運(yùn)用數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡(jiǎn)整理即可得到所求和.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對(duì)數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形為矩形,四邊形為直角梯形,,,,.

(1)求證:;

(2)求證:平面

(3)若二面角的大小為,求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是實(shí)數(shù),已知奇函數(shù),

(1)的值;

(2)證明函數(shù)R上是增函數(shù);

(3)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(x+2)為偶函數(shù),f(4)=1,則不等式f(x)<ex的解集為(
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

)若,求曲線在點(diǎn)處的切線方程.

)若,求函數(shù)的單調(diào)區(qū)間.

)若,且在區(qū)間上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)求焦點(diǎn)在軸,焦距為4,并且經(jīng)過(guò)點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;

(2)已知雙曲線的漸近線方程為,且與橢圓有公共焦點(diǎn),求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,且,若存在,,使得成立,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的為(

A. B. C. D. y=ln

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了保護(hù)環(huán)境,發(fā)展低碳經(jīng)濟(jì),某單位在國(guó)家科研部門(mén)的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為:yx2-200x+80000,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為100元.

該單位每月能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則國(guó)家至少需要補(bǔ)貼多少元才能使該單位不虧損?

查看答案和解析>>

同步練習(xí)冊(cè)答案