在△ABC中,角A、B、C的對(duì)邊分別為a,b,c,角A,B,C成等差數(shù)列;
(1)求cosB的值;
(2)若b=2,△ABC的面積為
3
,求a,c.
考點(diǎn):余弦定理,正弦定理
專題:解三角形
分析:(1)由A,B,C成等差數(shù)列,利用等差數(shù)列的性質(zhì)及內(nèi)角和定理得到B的度數(shù),即可確定出cosB的值;
(2)利用三角形面積公式列出關(guān)系式,把已知面積與sinB的值代入求出ac的值,利用余弦定理列出關(guān)系式,把b與cosB的值代入,并利用完全平方公式變形,把a(bǔ)c的值代入求出a+c的值,聯(lián)立即可求出a與c的值.
解答: 解:(1)∵△ABC中,A,B,C成等差數(shù)列,
∴2B=A+C,A+B+C=180°,
∴B=60°,
則cosB=
1
2
;
(2)∵△ABC面積為
3

1
2
acsinB=
3
,即ac=4①,
由余弦定理得:b2=a2+c2-2accosB,即4=a2+c2-ac=(a+c)2-3ac,
把a(bǔ)c=4代入得:(a+c)2=16,即a+c=4②,
聯(lián)立①②解得:a=c=2.
點(diǎn)評(píng):此題考查了正弦、余弦定理,三角形面積公式,三角形面積公式,以及等差數(shù)列的性質(zhì),熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=k•cosx的圖象過點(diǎn)P(
π
3
,1),則該函數(shù)圖象在P點(diǎn)處的切線斜率等于( 。
A、1
B、-
3
C、2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-ax+b,f(x)>0的解集為{x∈R|x≠1}.
(1)求a、b的值;
(2)若不等式mx2+(m-3)x-1<f(x)的解集為R,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們將一系列值域相同的函數(shù)稱為“同值函數(shù)”,已知f(x)=x2-2x+2,x∈[-1,2],試寫出f(x)的一個(gè)“同值函數(shù)”(一次函數(shù)、二次函數(shù)除外)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“a,b都是偶數(shù),則a與b的和是偶數(shù)”的逆否命題是(  )
A、a與b的和是偶數(shù),則a,b都是偶數(shù)
B、a與b的和不是偶數(shù),則a,b都不是偶數(shù)
C、a,b不都是偶數(shù),則a與b的和不是偶數(shù)
D、a與b的和不是偶數(shù),則a,b不都是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>1,y>1,且lgxlgy=1,則xy的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解居民用水情況,在某小區(qū)隨機(jī)抽查了15戶家庭的月用水量,結(jié)果如下表:
月用水量(噸)45689
戶數(shù)25431
則這15戶家庭的月用水量的眾數(shù)與中位數(shù)分別為( 。
A、9、6B、6、6
C、5、6D、5、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若b=1,c=
3
,B=
π
6
,則S△ABC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(2x+
π
2
)是( 。
A、奇函數(shù)且在[0,
π
2
]上單調(diào)遞增
B、偶函數(shù)且在[0,
π
2
]上單調(diào)遞增
C、奇函數(shù)且在[
π
2
,π]上單調(diào)遞增
D、偶函數(shù)且在[
π
2
,π]上單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊(cè)答案