【題目】口袋中裝有2個(gè)白球和n(n≥2,nN*)個(gè)紅球.每次從袋中摸出2個(gè)球(每次摸球后把這2個(gè)球放回口袋中),若摸出的2個(gè)球顏色相同則為中獎(jiǎng),否則為不中獎(jiǎng).
(I)用含n的代數(shù)式表示1次摸球中獎(jiǎng)的概率;
(Ⅱ)若n=3,求3次摸球中恰有1次中獎(jiǎng)的概率;
(III)記3次摸球中恰有1次中獎(jiǎng)的概率為f(p),當(dāng)f(p)取得最大值時(shí),求n的值.
【答案】(I);(II);(III)當(dāng)f(p)取得最大值時(shí),n的值為2.
【解析】試題分析:
(1)由題意結(jié)合古典概型公式可得所求概率值為;
(2)利用二項(xiàng)分布可得3次摸球中恰有1次中獎(jiǎng)的概率是;
(3)結(jié)合概率函數(shù)的解析式可得當(dāng)f(p)取得最大值時(shí),n的值為2.
試題解析:
(I)設(shè)“1次摸球中獎(jiǎng)”為事件A,則P(A)=,
(II)由(I)得,若n=3,則1次摸球中獎(jiǎng)的概率為p===,
所以3次摸球中,恰有1次中獎(jiǎng)的概率為P3(1)=,
(III)設(shè)“1次摸球中獎(jiǎng)”的概率為p,
則3次摸球中,恰有1次中獎(jiǎng)的概率為
f(p)=Cp(1-p)2 =3p3-6p2+3p(0<p<1),
因?yàn)?/span>f'(p)=9p2-12p+3=3(p-1)(3p-1),
所以,當(dāng)p∈(0, )時(shí),f(p)單調(diào)遞增;當(dāng)p∈(,1)時(shí),f(p)單調(diào)遞減,
所以,當(dāng)p=時(shí),f(p)取得最大值.
令,解得n=2,n=1(舍去).
所以,當(dāng)f(p)取得最大值時(shí),n的值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營一批進(jìn)價(jià)為30元/件的商品,在市場試銷中發(fā)現(xiàn),此商品的銷售單價(jià)x元與日銷售量y件之間有如下所表示的關(guān)系.
x | … | 30 | 40 | 45 | 50 | … |
y | … | 60 | 30 | 15 | 0 | … |
(1)在所給的坐標(biāo)系中,如圖,根據(jù)表格提供的數(shù)據(jù)描出實(shí)數(shù)對(x,y)的對應(yīng)點(diǎn),并確定y與x的一個(gè)函數(shù)關(guān)系式y=f(x);
(2)設(shè)經(jīng)營此商品的日銷售利潤為P元,根據(jù)上述關(guān)系,寫出P關(guān)于x的函數(shù)關(guān)系式,并指出銷售單價(jià)x為多少時(shí),才能獲得最大日銷售利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市將建一個(gè)制藥廠,但該廠投產(chǎn)后預(yù)計(jì)每天要排放大約80噸工業(yè)廢氣,這將造成極大的環(huán)境污染.為了保護(hù)環(huán)境,市政府決定支持該廠貸款引進(jìn)廢氣處理設(shè)備來減少廢氣的排放,該設(shè)備可以將廢氣轉(zhuǎn)化為某種化工產(chǎn)品和符合排放要求的氣體,經(jīng)測算,制藥廠每天利用設(shè)備處理廢氣的綜合成本(元)與廢氣處理量(噸)之間的函數(shù)關(guān)系可近似地表示為,且每處理噸工業(yè)廢氣可得價(jià)值為元的某種化工產(chǎn)品并將之利潤全部用來補(bǔ)貼廢氣處理.
(1)若該制藥廠每天廢氣處理量計(jì)劃定位20噸時(shí),那么工廠需要每天投入的廢氣處理資金為多少元?
(2)若該制藥廠每天廢氣處理量計(jì)劃定為噸,且工廠不用投入廢氣處理資金就能完成計(jì)劃的處理量,求的取值范圍;
(3)若該制藥廠每天廢氣處理量計(jì)劃定為()噸,且市政府決定為處理每噸廢氣至少補(bǔ)貼制藥廠元以確保該廠完成計(jì)劃的處理量總是不用投入廢氣處理資金,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1中, AB=AC=AA1,AB⊥AC,M是CC1的中點(diǎn),N是BC的中點(diǎn),點(diǎn)P在線段A1B1上運(yùn)動(dòng).
(Ⅰ)求證:PN⊥AM;
(Ⅱ)試確定點(diǎn)P的位置,使直線PN和平面ABC所成的角
最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)市場分析,南雄市精細(xì)化工園某公司生產(chǎn)一種化工產(chǎn)品,當(dāng)月產(chǎn)量在10噸至25噸時(shí),月生產(chǎn)總成本y(萬元)可以看成月產(chǎn)量x(噸)的二次函數(shù);當(dāng)月產(chǎn)量為10噸時(shí),月總成本為20萬元;當(dāng)月產(chǎn)量為15噸時(shí),月總成本最低為17.5萬元,為二次函數(shù)的頂點(diǎn).寫出月總成本y(萬元)關(guān)于月產(chǎn)量x(噸)的函數(shù)關(guān)系.已知該產(chǎn)品銷售價(jià)為每噸1.6萬元,那么月產(chǎn)量為多少時(shí),可獲最大利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)零點(diǎn),求滿足條件的最小正整數(shù)的值;
(3)若方程,有兩個(gè)不相等的實(shí)數(shù)根,比較與0的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若函數(shù)存在極值,對于任意的,存在正實(shí)數(shù),使得,試判斷與的大小關(guān)系并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),().
(1)若函數(shù)與的圖象在上有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍;
(2)若在上不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:對于時(shí),任意,不等式恒成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com