17.已知集合A={x|x2+x-12=0},B={x|mx+1=0},若A∩B={3},則實數(shù)m的值為-$\frac{1}{3}$.

分析 求出集合A,根據(jù)A、B的交集求出m的值即可.

解答 解:A={x|x2+x-12=0}={3,-4},
由A∩B={3}得:3m+1=0,
解得:$m=-\frac{1}{3}$,
故答案為:-$\frac{1}{3}$.

點評 本題考查了集合的運算,考查交集的定義,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知平行直線l1:x-2y-2=0,l2:2x-4y+1=0,則l1與l2之間的距離為$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.“0≤m≤1”是“函數(shù)f(x)=cosx+m-1有零點”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如圖,在限速為90km/h的公路AB旁有一測速站P,已知點P距測速區(qū)起點A的距離為80m,距測速區(qū)終點B的距離為50m,且∠APB=60°.現(xiàn)測得某輛汽車從A點行駛到B點所用的時間為3s,則此車的速度介于(  )
A.16~19m/sB.19~22m/sC.22~25m/sD.25~28m/s

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下列函數(shù)中,在區(qū)間(0,+∞)上單調(diào)遞增的是( 。
A.y=$\frac{x}{x+1}$B.y=1-xC.y=x2-xD.y=1-x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知集合A={x|x2-3x<0},B={x|(x+2)(4-x)≥0},C={x|a<x≤a+1}.
(1)求A∩B;
(2)若B∪C=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.$\sqrt{a\sqrt{a\sqrt{a}}}$的值為( 。
A.${a^{\frac{1}{4}}}$B.${a^{\frac{2}{5}}}$C.${a^{\frac{7}{8}}}$D.${a^{\frac{5}{8}}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若F1、F2是雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的左右焦點,M是雙曲線右支上一動點,則$\frac{1}{|M{F}_{2}|}$-$\frac{1}{|M{F}_{1}|}$的最大值為( 。
A.$\frac{3}{4}$B.$\frac{4}{5}$C.1D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在平面直角坐標系xOy中,設(shè)命題p:橢圓C:$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{8-m}$=1的焦點在x軸上;命題q:直線l:x-y+m=0與圓O:x2+y2=9有公共點. 若命題p、命題q中有且只有一個為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案