13.已知實數(shù)a,b滿足(a+i)(1-i)=3+bi(i為虛數(shù)單位),記z=a+bi,則|z|是( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.5D.25

分析 利用復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等、模的計算公式即可得出.

解答 解:實數(shù)a,b滿足(a+i)(1-i)=3+bi(i為虛數(shù)單位),
∴a+1+(1-a)i=3+bi,可得a+1=3,1-a=b,
解得a=2,b=-1.
∴z=a+bi=2-i,
則|z|$\sqrt{{2}^{2}+(-1)^{2}}$=$\sqrt{5}$.
故選:B.

點評 本題考查了復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等、模的計算公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,長方體ABCD-A1B1C1D1中,O是BD的中點,AA1=2AB=2BC=4.
(1)求證:C1O∥平面AB1D1
(2)點E在側(cè)棱AA1上,求四棱錐E-BB1D1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點P在雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$上,點A滿足$\overrightarrow{PA}=(t-1)\overrightarrow{OP}$(t∈R),且$\overrightarrow{OA}•\overrightarrow{OP}=64$,$\overrightarrow{OB}=(0,1)$,則$|{\overrightarrow{OB}•\overrightarrow{OA}}|$的最大值為(  )
A.$\frac{5}{4}$B.$\frac{24}{5}$C.$\frac{4}{5}$D.$\frac{5}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在復(fù)平面中,復(fù)數(shù)$\frac{1}{{{{({1+i})}^2}+1}}+i$對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點,A,B分別為其左、右頂點.O為坐標(biāo)原點,D為其上一點,DF⊥x軸.過點A的直線l與線段DF交于點E,與y軸交于點M,直線BE與y軸交于點N,若3|OM|=2|ON|,則雙曲線的離心率為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.過動點P作圓:(x-3)2+(y-4)2=1的切線PQ,其中Q為切點,若|PQ|=|PO|(O為坐標(biāo)原點),則|PQ|的最小值是$\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{alnx}{x}$+b(a,b∈R)的圖象在點(1,f(1))處的切線方程為y=x-1.
(1)求實數(shù)a,b的值及函數(shù)f(x)的單調(diào)區(qū)間.
(2)當(dāng)f(x1)=f(x2)(x1≠x2)時,比較x1+x2與2e(e為自然對數(shù)的底數(shù))的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知2-9,2a1,2a2,2-1成等比數(shù)列,2,log3b1,log3b2,log3b3,0成等差數(shù)列,則b2(a2-a1)=( 。
A.-8B.8C.$-\frac{9}{8}$D.$\frac{9}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若一個水平放置的平面圖形的斜二測直觀圖是一個底角為45°,腰和上底均為1的等腰梯形,則原平面圖形的周長為(  )
A.4+$\sqrt{2}$+$\sqrt{6}$B.3+$\sqrt{2}$+$\sqrt{3}$C.2+$\sqrt{2}$D.3+$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案