【題目】已知、分別為雙曲線的左右焦點,左右頂點為、,是雙曲線上任意一點,則分別以線段、為直徑的兩圓的位置關(guān)系為( )
A. 相交B. 相切C. 相離D. 以上情況均有可能
【答案】B
【解析】
設(shè)|PF1|=m,|PF2|=n,討論若P在雙曲線的右支上和P在雙曲線的左支上,結(jié)合雙曲線的定義和中位線定理,以及兩圓位置關(guān)系的判斷方法,計算可得所求結(jié)論.
設(shè)|PF1|=m,|PF2|=n,
若P在雙曲線的右支上,可得m﹣n=2a,
設(shè)PF1的中點為H,由中位線定理可得
可得|OH|n(m﹣2a)m﹣a,
即有以線段PF1、A1A2為直徑的兩圓相內(nèi)切;
若P在雙曲線的左支上,可得n﹣m=2a,
設(shè)PF1的中點為H,由中位線定理可得
可得|OH|n(m+2a)m+a,
即有以線段PF1、A1A2為直徑的兩圓相外切.
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形ABCD的三個頂點的坐標(biāo)為,,.
在中求邊AC的高線所在直線的一般方程;
求平行四邊形ABCD的對角線BD的長度;
求平行四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著城市化進(jìn)程日益加快,勞動力日益向城市流動,某市為抽查該市內(nèi)工廠的生產(chǎn)能力,隨機抽取某個人數(shù)為1000人的工廠,其中有750人為高級工,250人為初級工,擬采用分層抽樣的方法從本廠抽取100名工人,來抽查工人的生產(chǎn)能力,初級工和高級工的抽查結(jié)果分組情況如表1和表2.
表1:
生產(chǎn)能力分組 | |||||
人數(shù) | 4 | 8 | 5 | 3 |
表2:
生產(chǎn)能力分組 | ||||
人數(shù) | 6 | 36 | 18 |
(1)計算,,完成頻率分直方圖:
圖1:初級工人生產(chǎn)能力的頻率分布直方圖 圖2:高級工人生產(chǎn)能力的頻率分布直方圖
(2)初級工和高級工各抽取多少人?
(3)分別估計兩類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人生產(chǎn)能力的平均數(shù).(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若函數(shù)是R上的單調(diào)函數(shù),求實數(shù)a的取值范圍;
(2)設(shè)a=, (, ), 是的導(dǎo)函數(shù).①若對任意的x>0, >0,求證:存在,使<0;②若,求證: <.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
當(dāng)時,求函數(shù)的單調(diào)區(qū)間和極值;
若在上是單調(diào)函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,B為AC的中點,分別以AB,AC為直徑在AC的同側(cè)作半圓,M,N分別為兩半圓上的動點不含端點A,B,,且,則的最大值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍;
(2)令,是否存在實數(shù),當(dāng)(是自然常數(shù))時,函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由.
(3)當(dāng)時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)兩點M(4,﹣2),N(2,4).
(1)求MN的垂直平分線方程;
(2)直線l經(jīng)過點A(3,0),且點M和點N到直線l的距離相等,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com