(2013•石景山區(qū)一模)設(shè)a∈R,則“a=1”是“直線l1:ax+2y=0與直線l2:x+(a+1)y+4=0平行”的( 。
分析:利用a=1判斷兩條直線是否平行;通過兩條直線平行是否推出a=1,即可得到答案.
解答:解:因?yàn)椤癮=1”時(shí),“直線l1:ax+2y=0與l2:x+(a+1)y+4=0”
化為l1:x+2y=0與l2:x+2y+4=0,顯然兩條直線平行;
如果“直線l1:ax+2y=0與l2:x+(a+1)y+4=0平行”
必有a(a+1)=2,解得a=1或a=-2,
所以“a=1”是“直線l1:ax+2y=0與l2:x+(a+1)y+4=0平行”的充分不必要條件.
故選A.
點(diǎn)評(píng):本題考查充要條件的判斷,能夠正確判斷兩個(gè)命題之間的條件與結(jié)論的推出關(guān)系是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)二模)對(duì)于直線m,n和平面α,β,使m⊥α成立的一個(gè)充分條件是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)一模)若直角坐標(biāo)平面內(nèi)的兩點(diǎn)P、Q滿足條件:
①P、Q都在函數(shù)y=f(x)的圖象上;
②P、Q關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)對(duì)[P,Q]是函數(shù)y=f(x)的一對(duì)“友好點(diǎn)對(duì)”(點(diǎn)對(duì)[P,Q]與[Q,P]看作同一對(duì)“友好點(diǎn)對(duì)”),
已知函數(shù)f(x)=
log2x(x>0)
-x2-4x(x≤0)
,則此函數(shù)的“友好點(diǎn)對(duì)”有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)一模)設(shè)集合M={x|x2≤4),N={x|log2 x≥1},則M∩N等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)一模)某四棱錐的三視圖如圖所示,則最長的一條側(cè)棱長度是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)一模)將一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為m,第二次出現(xiàn)的點(diǎn)數(shù)為n,向量
p
=(m,n),
q
=(3,6),則向量
p
q
共線的概率為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案