若等差數(shù)列和等比數(shù)列的首項(xiàng)均為1,且公差,公比,則集合 的元素個(gè)數(shù)最多有 個(gè).

 

2

【解析】

試題分析:由題意得:,令則由,當(dāng)時(shí),上單調(diào)增,方程有且僅有一解;當(dāng)時(shí),上單調(diào)減,在上單調(diào)增,方程至多有兩解

考點(diǎn):方程與函數(shù)思想

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三5月信息卷理科數(shù)學(xué)試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的焦點(diǎn)在軸上,離心率為,且經(jīng)過點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2) 以橢圓的長(zhǎng)軸為直徑作圓,設(shè)為圓上不在坐標(biāo)軸上的任意一點(diǎn),軸上一點(diǎn),過圓心作直線的垂線交橢圓右準(zhǔn)線于點(diǎn).問:直線能否與圓總相切,如果能,求出點(diǎn)的坐標(biāo);如果不能,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級(jí)部決戰(zhàn)四統(tǒng)測(cè)二理科數(shù)學(xué)試卷(解析版) 題型:解答題

據(jù)環(huán)保部門測(cè)定,某處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源距離的平方成反比,比例常數(shù)為.現(xiàn)已知相距18的A,B兩家化工廠(污染源)的污染強(qiáng)度分別為,它們連線上任意一點(diǎn)C處的污染指數(shù)等于兩化工廠對(duì)該處的污染指數(shù)之和.設(shè)).

(1)試將表示為的函數(shù); (2)若,且時(shí),取得最小值,試求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級(jí)部決戰(zhàn)四統(tǒng)測(cè)二文科數(shù)學(xué)試卷(解析版) 題型:解答題

如果函數(shù)的定義域?yàn)镽,對(duì)于定義域內(nèi)的任意,存在實(shí)數(shù)使得成立,則稱此函數(shù)具有“性質(zhì)”。

(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有的值;若不具有“性質(zhì)”,說明理由;

(2)已知具有“性質(zhì)”,且當(dāng)時(shí),求上有最大值;

(3)設(shè)函數(shù)具有“性質(zhì)”,且當(dāng)時(shí),.若交點(diǎn)個(gè)數(shù)為2013,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級(jí)部決戰(zhàn)四統(tǒng)測(cè)二文科數(shù)學(xué)試卷(解析版) 題型:填空題

若關(guān)于的不等式的解集中有且僅有4個(gè)整數(shù)解,則實(shí)數(shù)的取值范圍是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級(jí)部決戰(zhàn)四統(tǒng)測(cè)二文科數(shù)學(xué)試卷(解析版) 題型:填空題

某商場(chǎng)有四類食品,其中糧食類、植物油類、動(dòng)物性食品類及果蔬類分別有40種、10種、30種、20 種,從中抽取一個(gè)容量為20的樣本進(jìn)行食品安全檢測(cè)。若采用分層抽樣的方法抽取樣本,則抽取的植物油類與果蔬類食品種數(shù)之和是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級(jí)部決戰(zhàn)四統(tǒng)測(cè)三數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD是平行四邊形,且AC⊥CD,PA=AD,M,Q分別是PD,BC的中點(diǎn).

(1)求證:MQ∥平面PAB;

(2)若AN⊥PC,垂足為N,求證:MN⊥PD.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三下學(xué)期4月周練理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示的幾何體中,面為正方形,面為等腰梯形, ,,,且平面平面

(1)求與平面所成角的正弦值;

(2)線段上是否存在點(diǎn),使平面平面?

證明你的結(jié)論.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省徐州市高三第三次質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

在數(shù)列中,已知,(,).

(1)當(dāng)時(shí),分別求的值,判斷是否為定值,并給出證明;

(2)求出所有的正整數(shù),使得為完全平方數(shù).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案