17.某幾何體的三視圖如圖,它的側(cè)視圖與正視圖相同,則它的體積為( 。
A.$2+\frac{{4\sqrt{2}π}}{3}$B.$4+\frac{{8\sqrt{2}π}}{3}$C.$2+\frac{{8\sqrt{2}π}}{3}$D.$4+\frac{{4\sqrt{2}π}}{3}$

分析 幾何體是長方體與半球體的組合體,根據(jù)三視圖可得長方體的高、底面對角線的長,球的半徑,把數(shù)據(jù)代入體積公式計算即可

解答 解:由三視圖知:幾何體是長方體與半球體的組合體,
長方體的底面是的對稱線長為2$\sqrt{2}$正方形,高為1,球的半徑為$\sqrt{2}$,
故體積為$\frac{1}{2}$×2$\sqrt{2}$×2$\sqrt{2}$×1+$\frac{1}{2}$×$\frac{4}{3}$π×($\sqrt{2}$)3=4+$\frac{4\sqrt{2}}{3}$π,
故選:D

點評 本題考查了由三視圖求幾何體的體積,判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)($\frac{\sqrt{3}}{2}$i-$\frac{1}{2}$)+$\frac{\sqrt{3}}{2}$i=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f1(x)=ex(sinx+cosx),fn+1(x)=fn′(x),則f2017(x)=(  )
A.-21007excosxB.-21007ex(cosx-sinx)
C.21008exsinxD.21008ex(sinx+cosx)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某幾何體的三視圖如圖所示,則該幾何體的體積是$\frac{11}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知對任意平面向量$\overrightarrow{AB}$=(x,y),把$\overrightarrow{AB}$繞其起點沿逆時針旋轉(zhuǎn)θ角得到向量$\overrightarrow{AP}$=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把點B繞點A逆時針方向旋轉(zhuǎn)角θ得到點P,設(shè)平面內(nèi)曲線C上的每一點繞原點逆時針方向旋轉(zhuǎn)$\frac{π}{4}$后得到點的軌跡是曲線x2-y2=2,則原來曲線C的方程是(  )
A.xy=-1B.xy=1C.y2-x2=2D.y2-x2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知α為第三象限角,$f(α)=\frac{{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}}{tan(-α-π)sin(-α-π)}$.
(1)化簡f(α);
(2)若$f(α)=\frac{4}{5}$,求tanα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,若角A,B,C的對邊分別為a,b,c,且$\sqrt{2}$a=2bsinA,則角B=$\frac{π}{4}$或$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知下列兩個命題:
命題p:實系數(shù)一元二次方程x2+mx+2=0有虛根;
命題q:關(guān)于x的方程:2x2-4(m-1)x+m2+7=0(m∈R)的兩個虛根的模的和不大于$4\sqrt{2}$,
若p、q均為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}的公差為2,若a2,a3,a6成等比數(shù)列
(1)求數(shù)列{an}的通項公式;
(2)設(shè)${b_n}=\frac{1}{{{a_{n+1}}{a_n}}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案