【題目】已知數(shù)列{an}是首項(xiàng)為a1=,公比q=的等比數(shù)列,設(shè),數(shù)列滿足cn=an·bn.
(1)求證:{bn}是等差數(shù)列;
(2)求數(shù)列{cn}的前n項(xiàng)和Sn;
(3)若cn≤m2+m-1對一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.
【答案】(1)證明見解析;(2)Sn= (n∈N+)(3)或
【解析】試題分析:(1)利用等差數(shù)列的定義證明數(shù)列是等差數(shù)列即可;(2)根據(jù)數(shù)列的通項(xiàng)特點(diǎn),采用錯(cuò)位相減法求數(shù)列的前n項(xiàng)和;(3)利用數(shù)列的單調(diào)性求數(shù)列的最大值,問題轉(zhuǎn)化為解含m的不等式即可.
試題解析:(1)證明:由題意知, ,
∵, ,
∴,
∴數(shù)列是首項(xiàng)的等差數(shù)列.
(2)由(1)知, ,
∴,
∴;
于是
兩式相減得:
∴.
(3)∵,
∴當(dāng)時(shí), ,
當(dāng)時(shí), ,即,
∴當(dāng)n=1或2時(shí), 取得最大值是.
又對一切正整數(shù)恒成立,
∴,
即,解得或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,O為AC與BD的交點(diǎn),AB平面PAD,△PAD是正三角形,DC//AB,DA=DC=2AB.
(1)若點(diǎn)E為棱PA上一點(diǎn),且OE∥平面PBC,求的值;
(2)求證:平面PBC平面PDC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a、b、c分別為內(nèi)角A、B、C的對邊,且2asinA=(2b+c)sinB+(2c+b)sinC
(1)求A的大小;
(2)若sinB+sinC=1,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點(diǎn)A(﹣2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點(diǎn).
(1)求圓C的方程;
(2)若,求實(shí)數(shù)k的值;
(3)過點(diǎn)(0,4)作動(dòng)直線m交圓C于E,F(xiàn)兩點(diǎn).試問:在以EF為直徑的所有圓中,是否存在這樣的圓P,使得圓P經(jīng)過點(diǎn)M(2,0)?若存在,求出圓P的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓+=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,一條直線經(jīng)過點(diǎn)F1與橢圓交于A,B兩點(diǎn).
(1)求△ABF2的周長;
(2)若的傾斜角為,求弦長|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x不等式x2﹣2mx+m+2<0(m∈R)的解集為M.
(1)當(dāng)M為空集時(shí),求m的取值范圍;
(2)在(1)的條件下,求的最大值;
(3)當(dāng)M不為空集,且M [1,4]時(shí),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對照數(shù)據(jù):
(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;并指出是否線性相關(guān);
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程 ;
(3)已知該廠技術(shù)改造前噸甲產(chǎn)品能耗為噸標(biāo)準(zhǔn)煤,試根據(jù)求出的線性回歸方程,預(yù)測生產(chǎn)噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?
(參考:用最小二乘法求線性回歸方程系數(shù)公式 ,, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,點(diǎn)P,G分別是AD,EF的中點(diǎn),已知平面ABC,AD=EF=3,DE=DF=2.
(Ⅰ)求證:DG⊥平面BCEF;
(Ⅱ)求PE與平面BCEF 所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com