【題目】設(shè).
(1)求證:在區(qū)間上沒(méi)有零點(diǎn);
(2)若不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)利用導(dǎo)數(shù)可求得在上是增函數(shù),可得,由此得到結(jié)論;
(2)解法一:利用放縮的方式可知,則只需即可;利用導(dǎo)數(shù)可證得,由時(shí),可確定此時(shí)滿足題意;由時(shí),存在實(shí)數(shù),使得任意,均有,可知存在,不滿足題意;
解法二:構(gòu)造函數(shù),求導(dǎo)后,分別在和兩種情況下根據(jù)導(dǎo)函數(shù)的符號(hào)確定函數(shù)單調(diào)性,由此可確定符合題意.
(1),則,
設(shè),則,
當(dāng)時(shí),,即為增函數(shù),,在上是增函數(shù),,
在區(qū)間上沒(méi)有零點(diǎn);
(2)解法一:由(1)知:當(dāng)時(shí),,,
,
設(shè),則,
設(shè),則,當(dāng)時(shí),,
在上為增函數(shù),,即,
在上為增函數(shù),,即,
所以對(duì)任意的恒成立.
又,時(shí),,
所以當(dāng)時(shí),對(duì)任意的恒成立;
當(dāng)時(shí),設(shè),則,
,所以存在實(shí)數(shù),使得任意,均有,
所以在上為減函數(shù),
當(dāng)時(shí),,即,時(shí)不符合題意;
綜上所述:實(shí)數(shù)的取值范圍為.
解法二:等價(jià)于
設(shè),則,
設(shè),則
當(dāng)時(shí),,單調(diào)遞減,
當(dāng)時(shí),,單調(diào)遞增,
當(dāng)時(shí),,當(dāng)時(shí),,
,
所以當(dāng)時(shí),恒成立,在上是增函數(shù),
所以,即,即
所以當(dāng)時(shí),對(duì)任意恒成立.
當(dāng)時(shí),,存在,當(dāng)時(shí),,
在上是減函數(shù),當(dāng)時(shí),,
即,不符合題意,故不滿足題意,
綜上所述,的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將曲線:上的點(diǎn)按坐標(biāo)變換,得到曲線,為與軸負(fù)半軸的交點(diǎn),經(jīng)過(guò)點(diǎn)且傾斜角為的直線與曲線的另一個(gè)交點(diǎn)為,與曲線的交點(diǎn)分別為,(點(diǎn)在第二象限).
(Ⅰ)寫(xiě)出曲線的普通方程及直線的參數(shù)方程;
(Ⅱ)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在棱長(zhǎng)為1的正方體中,,,分別是線段,,的中點(diǎn),又,分別在線段,上,且.設(shè)平面平面,現(xiàn)有下列結(jié)論:
①平面;
②;
③直線與平面不垂直;
④當(dāng)變化時(shí),不是定直線.
其中不成立的結(jié)論是______.(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)為曲線上的點(diǎn),,垂足為,若的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】東莞的輕軌給市民出行帶來(lái)了很大的方便,越來(lái)越多的市民選擇乘坐輕軌出行,很多市民都會(huì)開(kāi)汽車(chē)到離家最近的輕軌站,將車(chē)停放在輕軌站停車(chē)場(chǎng),然后進(jìn)站乘輕軌出行,這給輕軌站停車(chē)場(chǎng)帶來(lái)很大的壓力.某輕軌站停車(chē)場(chǎng)為了解決這個(gè)問(wèn)題,決定對(duì)機(jī)動(dòng)車(chē)停車(chē)施行收費(fèi)制度,收費(fèi)標(biāo)準(zhǔn)如下:4小時(shí)內(nèi)(含4小時(shí))每輛每次收費(fèi)5元;超過(guò)4小時(shí)不超過(guò)6小時(shí),每增加一小時(shí)收費(fèi)增加3元;超過(guò)6小時(shí)不超過(guò)8小時(shí),每增加一小時(shí)收費(fèi)增加4元,超過(guò)8小時(shí)至24小時(shí)內(nèi)(含24小時(shí))收費(fèi)30元;超過(guò)24小時(shí),按前述標(biāo)準(zhǔn)重新計(jì)費(fèi).上述標(biāo)準(zhǔn)不足一小時(shí)的按一小時(shí)計(jì)費(fèi).為了調(diào)查該停車(chē)場(chǎng)一天的收費(fèi)情況,現(xiàn)統(tǒng)計(jì)1000輛車(chē)的停留時(shí)間(假設(shè)每輛車(chē)一天內(nèi)在該停車(chē)場(chǎng)僅停車(chē)一次),得到下面的頻數(shù)分布表:
(小時(shí)) | ||||||
頻數(shù)(車(chē)次) | 100 | 100 | 200 | 200 | 350 | 50 |
以車(chē)輛在停車(chē)場(chǎng)停留時(shí)間位于各區(qū)間的頻率代替車(chē)輛在停車(chē)場(chǎng)停留時(shí)間位于各區(qū)間的概率.
(1)現(xiàn)在用分層抽樣的方法從上面1000輛車(chē)中抽取了100輛車(chē)進(jìn)行進(jìn)一步深入調(diào)研,記錄并統(tǒng)計(jì)了停車(chē)時(shí)長(zhǎng)與司機(jī)性別的列聯(lián)表:
男 | 女 | 合計(jì) | |
不超過(guò)6小時(shí) | 30 | ||
6小時(shí)以上 | 20 | ||
合計(jì) | 100 |
完成上述列聯(lián)表,并判斷能否有90%的把握認(rèn)為“停車(chē)是否超過(guò)6小時(shí)”與性別有關(guān)?
(2)(i)表示某輛車(chē)一天之內(nèi)(含一天)在該停車(chē)場(chǎng)停車(chē)一次所交費(fèi)用,求的概率分布列及期望;
(ii)現(xiàn)隨機(jī)抽取該停車(chē)場(chǎng)內(nèi)停放的3輛車(chē),表示3輛車(chē)中停車(chē)費(fèi)用大于的車(chē)輛數(shù),求的概率.
參考公式:,其中
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種昆蟲(chóng)的日產(chǎn)卵數(shù)和時(shí)間變化有關(guān),現(xiàn)收集了該昆蟲(chóng)第1天到第5天的日產(chǎn)卵數(shù)據(jù):
第x天 | 1 | 2 | 3 | 4 | 5 |
日產(chǎn)卵數(shù)y(個(gè)) | 6 | 12 | 25 | 49 | 95 |
對(duì)數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中的統(tǒng)計(jì)量的值.
15 | 55 | 15.94 | 54.75 |
(1)根據(jù)散點(diǎn)圖,利用計(jì)算機(jī)模擬出該種昆蟲(chóng)日產(chǎn)卵數(shù)y關(guān)于x的回歸方程為(其中e為自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)a,b的值(精確到0.1);
(2)根據(jù)某項(xiàng)指標(biāo)測(cè)定,若日產(chǎn)卵數(shù)在區(qū)間(e6,e8)上的時(shí)段為優(yōu)質(zhì)產(chǎn)卵期,利用(1)的結(jié)論,估計(jì)在第6天到第10天中任取兩天,其中恰有1天為優(yōu)質(zhì)產(chǎn)卵期的概率.
附:對(duì)于一組數(shù)據(jù)(v1,μ1),(v2,μ2),…,(vn,μn),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的焦距是,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)3倍,任作斜率為的直線與橢圓交于兩點(diǎn)(如圖所示),且點(diǎn)在直線的左上方.
(1)求橢圓的方程;
(2)若,求的面積;
(3)證明:的內(nèi)切圓的圓心在一條定直線上。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線l的參數(shù)方程是 (t為參數(shù)),圓C的極坐標(biāo)方程是ρ=4cos θ,求直線l被圓C截得的弦長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com