13.四棱錐P-ABCD的五個(gè)頂點(diǎn)都在一個(gè)球面上,底面ABCD是矩形,其中AB=3,BC=4,又PA⊥平面ABCD,PA=5,則該球的表面積為50π.

分析 把四棱錐補(bǔ)成長(zhǎng)方體,根據(jù)長(zhǎng)方體的對(duì)角線長(zhǎng)等于球的直徑求得外接球的半徑,代入球的表面積公式計(jì)算.

解答 解:把四棱錐補(bǔ)成長(zhǎng)方體,則四棱錐的外接球是長(zhǎng)方體的外接球,
∵長(zhǎng)方體的對(duì)角線長(zhǎng)等于球的直徑,
∴2R=$\sqrt{9+16+25}$=5$\sqrt{2}$,
∴R=$\frac{5\sqrt{2}}{2}$,
外接球的表面積S=4πR2=50π.
故答案為:50π.

點(diǎn)評(píng) 本題考查了棱錐的外接球的表面積的求法,利用長(zhǎng)方體的對(duì)角線長(zhǎng)等于球的直徑求得外接球的半徑是解答此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,已知四棱錐P-ABCD的底面為直角梯形,AD∥BC,∠BCD=90°,且PA⊥AB,PD⊥CD.
(1)判斷CD是否和平面PAD垂直;
(2)證明:面PAD⊥面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2sin(2x+$\frac{π}{3}$)+a的最大值為1.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,得到函數(shù)g(x)的圖象,若方程g(x)=m在x∈[0,$\frac{π}{2}$]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=ex,對(duì)于實(shí)數(shù)m、n、p有f(m+n)=f(m)+f(n),f(m+n+p)=f(m)+f(n)+f(p),則p的最大值等于2ln2-ln3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知正四面體的棱長(zhǎng)$\sqrt{2}$,則其外接球的表面積為( 。
A.B.12πC.$\frac{\sqrt{3}}{2}$πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知直線y=x+m和圓x2+y2=1交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),若$\overrightarrow{AO}•\overrightarrow{AB}=\frac{3}{2}$,則實(shí)數(shù)m=(  )
A.±1B.$±\frac{{\sqrt{3}}}{2}$C.$±\frac{{\sqrt{2}}}{2}$D.$±\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知A,B,C在球O的球面上,AB=1,BC=2,∠ABC=60°,直線OA與截面ABC所成的角為30°,則球O的表面積為( 。
A.B.16πC.$\frac{4}{3}$πD.$\frac{16}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知圓C:(x-3)2+(y-4)2=1和兩點(diǎn) A(-m,0),B(m,0)(m>0),若圓上存在點(diǎn) P,使得∠APB=90°,則m的取值范圍是[4,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線ax-by+c=0(abc≠0)與圓O:x2+y2=1相離,且|a|+|b|>|c|,則|a|,|b|,|c|為邊長(zhǎng)的三角形是( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.不存在

查看答案和解析>>

同步練習(xí)冊(cè)答案