【題目】16種食品所含的熱量值如下:
111 123 123 164 430 190 175 236
430 320 250 280 160 150 210 123
(1)求數(shù)據(jù)的中位數(shù)與平均數(shù);
(2)用這兩種數(shù)字特征中的哪一種來描述這個(gè)數(shù)據(jù)集更合適?
【答案】(1)中位數(shù)為:,平均數(shù)為:;(2)用平均數(shù)描述這個(gè)數(shù)據(jù)更合適.
【解析】
(1)根據(jù)中位數(shù)和平均數(shù)的定義計(jì)算即可;
(2)根據(jù)平均數(shù)和平均數(shù)的優(yōu)缺點(diǎn)進(jìn)行選擇即可.
(1)將數(shù)據(jù)從小到大排列得:
111,123,123,123,150,160,164,175,190,210,236,250,280,320,430,430.
所以中位數(shù)為:,
平均數(shù)為: ;
(2)用平均數(shù)描述這個(gè)數(shù)據(jù)更合適,理由如下:平均數(shù)反映的是總體的一個(gè)情況,中位數(shù)只是數(shù)列從小到大排列得到的最中間的一個(gè)數(shù)或兩個(gè)數(shù),所以平均數(shù)更能反映總體的一個(gè)整體情況.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B. 若p:,,則:,
C. “若,則”的否命題是“若,則”
D. 若為假命題,則p,q均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;
(1)求曲線的極坐標(biāo)方程與直線的直角坐標(biāo)方程;
(2)在曲線上取兩點(diǎn),與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某出版公司為一本暢銷書定價(jià)如下:
這里 n 表示訂購書的數(shù)量 , C(n)是訂購 n本書所付的錢款數(shù)(單位 :元).
(1)有多少個(gè) n , 會(huì)出現(xiàn)買多于 n 本書比恰好買n 本書所花的錢少?
(2)若一本書的成本是 5 元, 現(xiàn)有兩人來買書, 每人至少買 1 本, 兩人共買 60 本 ,則出版公司至少能賺多少錢? 至多能賺多少錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1,點(diǎn)M、E分別是PA、PD的中點(diǎn)
(1)求證:CE//平面BMD
(2)點(diǎn)Q為線段BP中點(diǎn),求直線PA與平面CEQ所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 為奇函數(shù).
(1)求b的值;
(2)證明:函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù);
(3)解關(guān)于x的不等式f(1+x2)+f(-x2+2x-4)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠共有男女員工500人,現(xiàn)從中抽取100位員工對(duì)他們每月完成合格產(chǎn)品的件數(shù)統(tǒng)計(jì)如下:
每月完成合格產(chǎn)品的件數(shù)(單位:百件) | |||||
頻數(shù) | 10 | 45 | 35 | 6 | 4 |
男員工人數(shù) | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格產(chǎn)品的件數(shù)不少于3200件的員工被評(píng)為“生產(chǎn)能手”.由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有95%的把握認(rèn)為“生產(chǎn)能手”與性別有關(guān)?
非“生產(chǎn)能手” | “生產(chǎn)能手” | 合計(jì) | |
男員工 | |||
span>女員工 | |||
合計(jì) |
(2)為提高員工勞動(dòng)的積極性,工廠實(shí)行累進(jìn)計(jì)件工資制:規(guī)定每月完成合格產(chǎn)品的件數(shù)在定額2600件以內(nèi)的,計(jì)件單價(jià)為1元;超出件的部分,累進(jìn)計(jì)件單價(jià)為1.2元;超出件的部分,累進(jìn)計(jì)件單價(jià)為1.3元;超出400件以上的部分,累進(jìn)計(jì)件單價(jià)為1.4元.將這4段中各段的頻率視為相應(yīng)的概率,在該廠男員工中選取1人,女員工中隨機(jī)選取2人進(jìn)行工資調(diào)查,設(shè)實(shí)得計(jì)件工資(實(shí)得計(jì)件工資=定額計(jì)件工資+超定額計(jì)件工資)不少于3100元的人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=e2x﹣ax2+1在[1,2]上是減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A. [,+∞) B. (,+∞) C. [,+∞) D. (,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com