【題目】某大學藝術(shù)專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:,并整理得到頻率分布直方圖(如圖所示).
(Ⅰ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間內(nèi)的人數(shù).
(Ⅱ)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.
【答案】(Ⅰ)20人(Ⅱ).
【解析】
(Ⅰ)先計算樣本中分數(shù)不小于50的頻率,進而計算分數(shù)在區(qū)間,內(nèi)的頻數(shù),可估計總體中分數(shù)在區(qū)間,內(nèi)的人數(shù);
(Ⅱ)由題意計算出樣本中分數(shù)不小于70的學生人數(shù),從而可以得到樣本中男女生的人數(shù),根據(jù)分層抽樣原理,得出總體中男女人數(shù)之比。
(Ⅰ)根據(jù)題意,樣本中分數(shù)不小于50的頻率為,分數(shù)在區(qū)間內(nèi)的人數(shù)為.
所以總體中分數(shù)在區(qū)間內(nèi)的人數(shù)估計為.
(Ⅱ)由題意可知,樣本中分數(shù)不小于70的學生人數(shù)為,
所以樣本中分數(shù)不小于70的男生人數(shù)為.
所以樣本中的男生人數(shù)為,女生人數(shù)為,男生和女生人數(shù)的比例為.
所以根據(jù)分層抽樣原理,總體中男生和女生人數(shù)的比例估計為.
科目:高中數(shù)學 來源: 題型:
【題目】張軍在網(wǎng)上經(jīng)營了一家干果店,銷售的干果中有松子、開心果、腰果、核桃,價格依次為120元/千克、80元/千克、70元/千克、40元/千克.為了增加銷量,張軍對以上四種干果進行促銷,若一次性購買干果的總價達到150元,顧客就少付x(x∈Z)元,每筆訂單顧客在網(wǎng)上支付成功后,張軍會得到支付款的80%.
①當x=15時,顧客一次性購買松子和腰果各1千克,需要支付_________________元;
②在促銷活動中,為保證張軍每筆訂單得到的金額均不低于促銷的總價的70%,則x的最大值為___________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體ABCD-A′B′C′D′的棱長為a,連接A′C′,A′D,A′B,BD,BC′,C′D,得到一個三棱錐.求:
(1)三棱錐A′-BC′D的表面積與正方體表面積的比值;
(2)三棱錐A′-BC′D的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過原點的動直線l與圓相交于不同的兩點A,B.
(1)求線段AB的中點M的軌跡C的方程;
(2)是否存在實數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+1,g(x)=4x+1,的定義域都是集合A,函數(shù)f(x)和g(x)的值域分別為S和T,
(1)若A=[1,2],求S∩T
(2)若A=[0,m]且S=T,求實數(shù)m的值
(3)若對于集合A的任意一個數(shù)x的值都有f(x)=g(x),求集合A.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有個人聚會,已知:
(1)每個人至少同其中個人互相認識;
(2)對于其中任意個人,或者其中有2人相識,或者余下的人中有2人相識,證明:這個人中必有3人兩兩相識.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com