【題目】下列函數(shù)是偶函數(shù),且在(0,+∞)上單調(diào)遞增的是(
A.y=x3
B.y=lgx
C.y=|x|
D.y=1﹣x2

【答案】C
【解析】解:y=x3在(0,+∞)上是增函數(shù),是奇函數(shù),不是偶函數(shù),不滿足條件,
y=lgx在(0,+∞)上是增函數(shù),為非奇非偶函數(shù),不是偶函數(shù),不滿足條件,
y=|x|在(0,+∞)上是增函數(shù),是偶函數(shù),滿足條件,
y=1﹣x2在(0,+∞)上是減函數(shù),是偶函數(shù),不滿足條件,
故選:C.
根據(jù)函數(shù)單調(diào)性和奇偶性的性質(zhì)分別進行判斷即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校開設(shè)A類選修課3門,B類選修課3門,一位同學(xué) 從中選3門.若要求兩類課程中各至少選一門,則不同的選法共有(
A.3種
B.6種
C.9種
D.18種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高二(7)班參加冬令營的6位同學(xué)排成一排照相,甲乙必須相鄰且甲、乙、丙必須從左到右的排法種數(shù)為(
A.120
B.60
C.36
D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b∈R,i是虛數(shù)單位,若a﹣i與2+bi互為共軛復(fù)數(shù),且z=(a+bi)2 , 則z在復(fù)平面中所表示的點在第( )象限.
A.一
B.二
C.三
D.四

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】福利彩票“雙色球”中紅色球的號碼由編號為01,02,…,33的33個個體組成,小明利用下面的隨機數(shù)表選取6組數(shù)作為6個紅色球的編號,選取方法是從隨機數(shù)表第1行的第7列數(shù)字開始由左到右依次讀取數(shù)據(jù),則選出來的第3個紅色球的編號為(

49 54 43 54 15 37 17 93 39 78 87 35 20 96 43 84 17 34 91 64

57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76


A.06
B.17
C.20
D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)滿足:f(x﹣1)=2x2﹣x,則函數(shù)f(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+ln(2﹣x),則(
A.y=f(x)的圖象關(guān)于點(1,0)對稱
B.f(x)在(0,2)單調(diào)遞減
C.y=f(x)的圖象關(guān)于直線x=1對稱
D.f(x)在(0,2)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中的真命題為 . ①復(fù)平面中滿足|z﹣2|﹣|z+2|=1的復(fù)數(shù)z的軌跡是雙曲線;
②當(dāng)a在實數(shù)集R中變化時,復(fù)數(shù)z=a2+ai在復(fù)平面中的軌跡是一條拋物線;
③已知函數(shù)y=f(x),x∈R+和數(shù)列an=f(n),n∈N,則“數(shù)列an=f(n),n∈N遞增”是“函數(shù)y=f(x),x∈R+遞增”的必要非充分條件;
④在平面直角坐標(biāo)系xoy中,將方程g(x,y)=0對應(yīng)曲線按向量(1,2)平移,得到的新曲線的方程為g(x﹣1,y﹣2)=0;
⑤設(shè)平面直角坐標(biāo)系xoy中方程F(x,y)=0表橢圓示一個,則總存在實常數(shù)p、q,使得方程F(px,qy)=0表示一個圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)y=f(x),若x0滿足f(x0)=x0 , 則稱x0為函數(shù)f(x)的一階不動點,若x0滿足f[f(x0)]=x0 , 則稱x0為函數(shù)f(x)的二階不動點,
(1)設(shè)f(x)=2x+3,求f(x)的二階不動點.
(2)若f(x)是定義在區(qū)間D上的增函數(shù),且x0為函數(shù)f(x)的二階不動點,求證:x0也必是函數(shù)f(x)的一階不動點;
(3)設(shè)f(x)=ex+x+a,a∈R,若f(x)在[0,1]上存在二階不動點x0 , 求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案