已知在(
x
+
1
2
4x
n的展開式中,前三項的系數(shù)成等差數(shù)列;
(1)求n;
(2)求展開式中的有理項.
分析:(1)利用前三項系數(shù)成等差數(shù)列,求出n.(2)利用二項展開式的通項公式求有理項.
解答:解:(1)(
x
+
1
2
4x
n的展開式的通項公式為Tk+1=
C
k
n
(
x
)
n-k
(
1
2
4x
)
k
=
C
k
n
(
1
2
)
k
x
2n-3k
4
,
所以前三項的系數(shù)分別為
C
0
n
1
2
C
1
n
,
1
4
C
2
n
,
因為前三項的系數(shù)成等差數(shù)列;
所以
C
0
n
+
1
4
C
2
n
=2×
1
2
C
1
n
=
C
1
n
,解得n=1或n=8,當(dāng)n=1時不合題意應(yīng)舍去,故n=8.(6分)
(2)當(dāng)n=8時,Tk+1=
C
k
8
(
x
)
8-k
(
1
2
4x
)
k
=
C
k
8
(
1
2
)
k
x
16-3k
4
,若展開式為有理式,
16-3k
4
∈N
,所以k應(yīng)是4的倍數(shù),故k可為0、4、8,
故所有有理項為:T1=x4,T5=
35
8
x,T9=
1
256x2
.                                     (12分)
點評:本題主要考查二項展開式的通項公式以及二項式定理的應(yīng)用,要求熟練掌握二項展開式的通項公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知(
x
+
1
2
4x
)n
展開式的前三項系數(shù)成等差數(shù)列.求n.
(2)如圖所示,在一個邊長為1的正方形AOBC內(nèi),曲線y=x2和曲線y=
x
圍成一個葉形圖(陰影部分),向正方形AOBC內(nèi)隨機(jī)投一點(該點落在正方形AOBC內(nèi)任何一點是等可能的),求所投的點落在葉形圖內(nèi)部的概率.

查看答案和解析>>

同步練習(xí)冊答案