如圖,為測量山高MN,選擇A和另一座山的山頂C為測量觀測點,從A點測得M點的仰角∠MAN=60°,C點的仰角∠CAB=45°,以及∠MAC=75°;從C點測得∠MCA=60°.已知山高BC=100m,則山高MN=
 
m.
考點:正弦定理
專題:解三角形
分析:△ABC中,由條件利用直角三角形中的邊角關(guān)系求得 AC;△AMC中,由條件利用正弦定理求得AM;Rt△AMN中,根據(jù)MN=AM•sin∠MAN,計算求得結(jié)果.
解答: 解:△ABC中,∵∠BAC=45°,∠ABC=90°,BC=100,
∴AC=
100
sin45°
=100
2

△AMC中,∵∠MAC=75°,∠MCA=60°,
∴∠AMC=45°,由正弦定理可得
AM
sin∠ACM
=
AC
sin∠AMC
,
AM
sin60°
=
100
2
sin45°
,解得AM=100
3

Rt△AMN中,MN=AM•sin∠MAN=100
3
×sin60°=150(m),
故答案為:150.
點評:本題主要考查正弦定理、直角三角形中的邊角關(guān)系,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由不等式組
x≤0
y≥0
y-x-2≤0
確定的平面區(qū)域記為Ω1,不等式組
x+y≤1
x+y≥-2
確定的平面區(qū)域記為Ω2,在Ω1中隨機取一點,則該點恰好在Ω2內(nèi)的概率為( 。
A、
1
8
B、
1
4
C、
3
4
D、
7
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E、F、P、Q、M、N分別是棱AB、AD、DD1、BB1、A1B1、A1D1的中點,求證:
(Ⅰ)直線BC1∥平面EFPQ;
(Ⅱ)直線AC1⊥平面PQMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=1+(1+a)x-x2-x3,其中a>0.
(Ⅰ)討論f(x)在其定義域上的單調(diào)性;
(Ⅱ)當(dāng)x∈[0,1]時,求f(x)取得最大值和最小值時的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某人在垂直于水平地面ABC的墻面前的點A處進行射擊訓(xùn)練.已知點A到墻面的距離為AB,某目標(biāo)點P沿墻面上的射線CM移動,此人為了準(zhǔn)確瞄準(zhǔn)目標(biāo)點P,需計算由點A觀察點P的仰角θ的大。鬉B=15m,AC=25m,∠BCM=30°,則tanθ的最大值是
 
.(仰角θ為直線AP與平面ABC所成角)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦點是雙曲線的頂點,雙曲線的焦點是橢圓的長軸頂點,若兩曲線的離心率分別為e1,e2,則e1•e2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分別在區(qū)間[1,6]和[1,4]內(nèi)任取一個實數(shù),依次記為m和n,則m>n的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l1:y=x+a和l2:y=x+b將單位圓C:x2+y2=1分成長度相等四段弧,則a2+b2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=
1
4
x2的準(zhǔn)線方程是( 。
A、y=-1B、y=-2
C、x=-1D、x=-2

查看答案和解析>>

同步練習(xí)冊答案