【題目】為了響應國家號召,某地決定分批建設保障性住房供給社會.首批計劃用100萬元購得一塊土地,該土地可以建造每層1 000平方米的樓房,樓房的每平方米建筑費用與建筑高度有關,樓房每升高一層,整層樓每平方米建筑費用提高20元.已知建筑第5層樓房時,每平方米建筑費用為800元.
(1)若建筑第x層樓時,該樓房綜合費用為y萬元(綜合費用是建筑費用與購地費用之和),寫出y=f(x)的表達式;
(2)為了使該樓房每平方米的平均綜合費用最低,應把樓層建成幾層?此時平均綜合費用為每平方米多少元?
【答案】(1) y=f(x)=x2+71x+100(x≥1,x∈Z) (2)10層,平均費用為每平方米910元
【解析】
試題分析:(1)第1層樓房每平方米建筑費用為920元,第1層樓房建筑費用為920×1000=920000(元)=92(萬元);樓房每升高一層,整層樓建筑費用提高20×1000=20000(元)=2(萬元);第x層樓房建筑費用為92+(x-1)×2=2x+90(萬元);建筑第x層樓時,樓房綜合費用=建筑總費用(等差數(shù)列前n項和)+購地費用,由此可得y=f(x);(2)樓房每平方米的平均綜合費用為g(x),則(元),代入(1)中f(x)整理,求出最小值即可
試題解析:(1)建筑第x層樓時,該樓房綜合費用為
y=f(x)=72x+×2+100=x2+71x+100,
綜上可知y=f(x)=x2+71x+100(x≥1,x∈Z).
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求在區(qū)間上的最大值和最小值;
(2)若在區(qū)間上, 函數(shù)的圖象恒在直線下方, 求的取值范圍;
(3)設.當時, 若對于任意,存在,使,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,直線,設圓的半徑為,圓心在上.
(Ⅰ)若圓心也在直線上,過點作圓的切線,求切線的方程;
(Ⅱ)若圓上存在點,使,求圓心的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)是定義域為R的奇函數(shù).
(1)求的值;
(2)若,試判斷的單調性(不需證明),并求使不等式恒成立的t的取值范圍;
(3)若,,求在上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,過點的直線的傾斜角為45°,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線和曲線的交點為點.
(1)求直線的參數(shù)方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若用斜二測畫法把一個高為10 cm的圓柱的底面畫在x′O′y′平面上,則該圓柱的高應畫成( )
A. 平行于z′軸且長度為10 cm
B. 平行于z′軸且長度為5 cm
C. 與z′軸成45°且長度為10 cm
D. 與z′軸成45°且長度為5 cm
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】五一節(jié)期間,某商場為吸引顧客消費推出一項優(yōu)惠活動.活動規(guī)則如下:消費額每滿100元可轉動如圖所示的轉盤一次,并獲得相應金額的返券.(假定指針等可能地停在任一位置, 指針落在區(qū)域的邊界時,重新轉一次)指針所在的區(qū)域及對應的返劵金額見右下表.
例如:消費218元,可轉動轉盤2次,所獲得的返券金額是兩次金額之和.
(1)已知顧客甲消費后獲得次轉動轉盤的機會,已知他每轉一次轉盤指針落在區(qū)域邊界的概率為,每次轉動轉盤的結果相互獨立,設為顧客甲轉動轉盤指針落在區(qū)域邊界的次數(shù),的數(shù)學期望,方差.求、的值;
(2)顧客乙消費280元,并按規(guī)則參與了活動,他獲得返券的金額記為(元).求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)寫出函數(shù)的定義域和值域;
(Ⅱ)證明函數(shù)在為單調遞減函數(shù);
(Ⅲ)試判斷函數(shù)的奇偶性,并證明.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com