精英家教網 > 高中數學 > 題目詳情
((本小題滿分10分)選修4—1:幾何證明選講
如圖,已知AD是的外角的平分線,交BC的延長線于點D,延長DA交的外接圓于點F,連結FB、FC

(I)求證:FB=FC;
(II)求證:FB2=FA·FD;
(III)若AB是外接圓的直徑,求AD的長。

解:(Ⅰ)∵AD平分ÐEAC,∴ÐEADDAC
∵四邊形AFBC內接于圓,∴ÐDACFBC
∵ÐEADFABFCB,∴ÐFBCFCB,
FB=FC.…………………………3分
(Ⅱ)∵ÐFABFCBFBC,ÐAFBBFD,
∴ΔFBA∽ΔFDB.∴
∴    FB2=FA·FD.    ……………………6分
(Ⅲ)∵AB是圓的直徑,∴ÐACB=90°.
∵ÐEAC=120°,∴ÐDAC=ÐEAC=60°,ÐBAC=60°.∴ÐD=30°.
BC= 6,∴AC=.∴AD=2AC=cm.………………………10分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

如圖,ABCD,EF分別為AD、BC的中點,若AB=18,CD=4,則EF的長是    

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

己知△ABC中,AB="AC" , D是△ABC外接圓劣弧上的點(不與點A , C重合),延長BD至E。
(1)求證:AD 的延長線平分;
(2)若,△ABC中BC邊上的高為,
求△ABC外接圓的面積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

.(12分)
如圖,△ABC內接于⊙O,過點A的直線交⊙O于點P,交BC的延長線于點D,
且AB2=AP·AD

(1)求證:AB=AC;
(2)如果∠ABC=60°,⊙O的半徑為1,且P為弧AC的中點,求AD的長.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

【選做題】本題包括A、B、C、D四小題,請選定其中兩題,并在相應的答題區(qū)域內作答.若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A. 選修4-1:幾何證明選講
(本小題滿分10分)
如圖,與⊙相切于點,的中點,
過點引割線交⊙,兩點,
求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在平行四邊形ABCD中,AD=2AB=2,∠BAD=60º,MN分別是對角線BD、AC上的點,AC、BD相交于點O,已知BM=BOON=OC.設向量=a=b
(1)試用a,b表示;w
(2)求||.
 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,PT為圓O的切線,T為切點,∠ATM=
π
3
,圓O的面積為2π,則PA=______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在直角三角形中,斜邊上的高為6cm,且把斜邊分成3︰2兩段,則斜邊上的中線的長為(  )
A.cmB.cmC.cmD.cm

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題


(本小題滿分10分)

圓的兩條弦AB、CD交于點F,從F點引BC的平行線和直線
DA的延長線交于點P,再從點P引這個圓的切線,切點是Q
求證:PF=PQ.

查看答案和解析>>

同步練習冊答案