f(x)=
x2+1,x≤0
-2x,x>0
,則f(f(3))=
37
37
分析:根據(jù)解析式分別求出f(3),f(f(3))即可.
解答:解:f(3)=-2×3=-6,f(-6)=(-6)2+1=37,
所以f(f(3))=f(-6)=37,
故答案為:37.
點(diǎn)評:本題考查分段函數(shù)的求值問題,屬基礎(chǔ)題,關(guān)鍵是“對號入座”.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
x2+1(0≤x≤1)
2x(-1≤x<0)
,則f-1(
5
4
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)計(jì)算法,要求輸入自變量x的值,輸出函數(shù)f(x)=
x2-1,x<-1
|x|+1,-1≤x≤1
3x
+3,x>1
的值,要求畫出程序框圖并寫出基本語句編寫的程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x2+1
-1
x
(x>0)
數(shù)列{an}滿足a1=a>0且an=f-1(an+1),
(1)求函數(shù)y=f(x)的反函數(shù);
(2)求證:an≤(
1
2
)n-1a
;
(3)若a=1試比較an與2-n的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2-1
+
1
x+4
的定義域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2+1
-ax,其中a>0

(1)解不等式f(x)≤1
(2)求證:當(dāng)a≥1時,函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)函數(shù)
(3)求使f(x)>0對一切x∈R*恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案