19.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)關(guān)于虛軸對(duì)稱,若z1=1-2i,其中i是虛數(shù)單位,則$\frac{{z}_{2}}{{z}_{1}}$的虛部為( 。
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{4}{5}$iD.$\frac{4}{5}$i

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、虛部的定義即可得出.

解答 解:復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)關(guān)于虛軸對(duì)稱,z1=1-2i,∴z2=-1-2i.
則$\frac{{z}_{2}}{{z}_{1}}$=$\frac{-1-2i}{1-2i}$=-$\frac{(1+2i)^{2}}{(1-2i)(1+2i)}$=-$\frac{-3+4i}{5}$=$\frac{3}{5}$-$\frac{4}{5}$i.
其虛部為-$\frac{4}{5}$.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知橢圓$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1與拋物線y2=2px(p>0)交于A、B兩點(diǎn),|AB|=2,則p=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如果實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{2x+y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$,則z=3x+2y的最大值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)M、N是直線x+y-2=0上的兩動(dòng)點(diǎn),且|MN|=$\sqrt{2}$,則$\overrightarrow{OM}$•$\overrightarrow{ON}$的最小值為(  )
A.1B.2C.$\frac{5}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{{e}^{x}}{m{x}^{2}+nx+k}$,其中m,n,k∈R.
(1)若m=n=k=1,求f(x)的單調(diào)區(qū)間;
(2)若n=k=1,且當(dāng)x≥0時(shí),f(x)≥1總成立,求實(shí)數(shù)m的取值范圍;
(3)若m>0,n=0,k=1,若f(x)存在兩個(gè)極值點(diǎn)x1、x2,求證:$\frac{e\sqrt{m}}{m}$<f(x1)+f(x2)<$\frac{{e}^{2}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若數(shù)列{an}滿足:只要ap=aq(p,q∈N*),必有ap+1=aq+1,那么就稱數(shù)列{an}具有相紙P,已知數(shù)列{an}具有性質(zhì)P,且a1=1,a2=2,a3=3,a5=2,a6+a7+a8=21,則a2017=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入a,b分別為9,15,則輸出的a=(  )
A.1B.2C.3D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在三棱柱ABC-A1B1C1中,AC=BC=2,∠ACB=120°,D為A1B1的中點(diǎn).
(1)證明:A1C∥平面BC1D;
(2)若A1A=A1C,點(diǎn)A1在平面ABC的射影在AC上,且BC與平面BC1D所成角的正弦值為$\frac{{\sqrt{15}}}{5}$,求三棱柱ABC-A1B1C1的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列函數(shù)中哪個(gè)與函數(shù)y=-x相等(  )
A.$y=-\sqrt{x^2}$B.$y=\frac{-x(x-1)}{x-1}$
C.y=-logaax(a>0且a≠1)D.$y=-\sqrt{x}•\sqrt{x}$

查看答案和解析>>

同步練習(xí)冊(cè)答案