在正三棱柱ABC-A1B1C1 中,AB=2,AA1=1,D是BC的中點(diǎn),點(diǎn)P在平面BCC1B1內(nèi),PB1=PC1=
2
.求二面角C1-AD-C的大。
考點(diǎn):二面角的平面角及求法
專題:空間角
分析:由已知條件推導(dǎo)出∠C1DC是二面角C1-AD-C的平面角,由此能求出二面角C1-AD-C的大。
解答: 解:∵正三棱柱ABC-A1B1C1 中,
AB=2,AA1=1,D是BC的中點(diǎn),
∴AD⊥CD,CC1⊥CD,CC1⊥AC,
AC1=
22+12
=
5
,
AD=
22-12
=
3
C1D=
1+1
=
2
,
∴AD⊥C1D,
∴∠C1DC是二面角C1-AD-C的平面角,
∵tanC1DC=
C1C
DC
=1
,∴∠C1DC=45°,
∴二面角C1-AD-C的大小為45°.
點(diǎn)評:本題考查二面角的大小的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若sinα是5x2-7x-6=0的根,求
sin(-α-
3
2
π)•sin(
3
2
π-α)•tan2(2π-α)
cos(
π
2
-α)•cos(
π
2
+α)•sin(3π+α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,∠ABC=∠ADC=90°,∠BAD=120°,AD=AB=1,AC交BD于O點(diǎn).
(Ⅰ)求證:平面PBD⊥平面PAC;
(Ⅱ)當(dāng)點(diǎn)A在平面PBD內(nèi)的射影G恰好是△PBD的重心時,求二面角B-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形OABC在變換T的作用下變成了平行四邊形OA′B′C′,變換T所對應(yīng)的矩陣為M,矩陣N是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)伸長到原來的3倍所對應(yīng)的變換矩陣. 
(Ⅰ)求(MN)-1;
(Ⅱ)判斷矩陣MN是否存在特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

C位于A城的南偏西20°的位置,B位于A城的南偏東40°的位置,有一人距C為31千米的B處正沿公路向A城走去,走了20千米后到達(dá)D處,此時CD間的距離為21千米,問這人還要走多少千米才能到達(dá)A城?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A′B′C′D′中,E是AA′棱的中點(diǎn).求平面BEC′與平面ABCD所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a2=5,a6=13.
(1)求等差數(shù)列的通項(xiàng)公式an;
(2)設(shè)bn=
2
n(an+1)
,求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)令cn=(n+1)Sn•3n,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求曲線y=3x4-4x3+1的拐點(diǎn)及凹凸區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣M=
20
11

①求矩陣M的逆矩陣M-1;
②求矩陣M的特征值及相應(yīng)的特征向量.

查看答案和解析>>

同步練習(xí)冊答案