【題目】已知f(x)=( )2(x>1)
(1)求f(x)的反函數(shù)及其定義域;
(2)若不等式(1﹣ )f﹣1(x)>a(a﹣ )對區(qū)間x∈[ , ]恒成立,求實數(shù)a的取值范圍.
【答案】
(1)解;∵x>1,∴0<f(x)<1.令y=( )2(x>1),解得x= ,∴f﹣1(x)= (0<x<1)
(2)解;∵f﹣1(x)= (0<x<1),∴不等式(1﹣ )f﹣1(x)>a(a﹣ )在區(qū)間x∈[ , ]恒成立 在區(qū)間x∈[ , ]恒成立,
對區(qū)間x∈[ , ]恒成立.
當(dāng)a=﹣1時,不成立,
當(dāng)a>﹣1時,a< 在區(qū)間x∈[ , ]恒成立,a<( )min,﹣1<a< .
當(dāng)a<﹣1時,a> 在區(qū)間x∈[ , ]恒成立,a>( )max,a無解.
綜上:實數(shù)a的取值范圍:﹣1<a<
【解析】(1)求出f(x)的值域,即f﹣1(x)的定義域,令y=( )2 , 解得x=
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 =1(a>b>0)的離心率為 ,坐標(biāo)原點O到過點A(0,﹣b)和B(a,0)的直線的距離為 .又直線y=kx+m(k≠0,m≠0)與該橢圓交于不同的兩點C,D.且C,D兩點都在以A為圓心的同一個圓上.
(1)求橢圓的方程;
(2)求△ABC面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下命題正確的是( )
A.α,β都是第一象限角,若cosα>cosβ,則sinα>sinβ
B.α,β都是第二象限角,若sinα>sinβ,則tanα>tanβ
C.α,β都是第三象限角,若cosα>cosβ,則sinα>sinβ
D.α,β都是第四象限角,若sinα>sinβ,則tanα>tanβ
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 若對于任意的n∈N* , 都有Sn=2an﹣3n.
(1)求證{an+3}是等比數(shù)列
(2)求數(shù)列{an}的通項公式;
(3)求數(shù)列{an}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以(﹣2,0)為圓心且與直線mx+2y﹣2m﹣6=0(m∈R)相切的所有圓中,面積最大的圓的標(biāo)準(zhǔn)方程是( )
A.(x+2)2+y2=16
B.(x+2)2+y2=20
C.(x+2)2+y2=25
D.(x+2)2+y2=36
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)正項數(shù)列{an}的前n項和為Sn , 且滿足 .
(1)計算a1 , a2 , a3的值,并猜想{an}的通項公式;
(2)用數(shù)學(xué)歸納法證明{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其導(dǎo)函數(shù)的兩個零點為和.
(I)求曲線在點處的切線方程;
(II)求函數(shù)的單調(diào)區(qū)間;
(III)求函數(shù)在區(qū)間上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若曲線在點處的切線斜率為3,且時, 有極值。
(1)求函數(shù)的解析式;
(2)求函數(shù)在上的最值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com