【題目】某市將舉辦2020年新年大型花卉展覽活動(dòng),舉辦方將建一塊占地10000平方米的矩形展覽場(chǎng)地ABCD,設(shè)計(jì)要求該場(chǎng)地的任何一邊長(zhǎng)度不得超過(guò)200.場(chǎng)地中間設(shè)計(jì)三個(gè)矩形展覽花圃①,②,③,其中花圃②與③是全等的矩形,每個(gè)花圃周?chē)菍挒?/span>5米的賞花路徑.其中①號(hào)花圃的一邊長(zhǎng)度為25米.如圖所示,設(shè)三個(gè)花圃占地總面積為S平方米,矩形展覽場(chǎng)地的BC長(zhǎng)為x.

1)試將S表示為x的函數(shù),并寫(xiě)出定義域;

2)問(wèn)應(yīng)該如何設(shè)計(jì)矩形場(chǎng)地的邊長(zhǎng),使花圃占地總面積S取得最大值.

【答案】1;(2,S取得最大值為7350.

【解析】

(1)花圃①的另一條邊的長(zhǎng)為,花圃②與③一邊的長(zhǎng)為,另一條邊的長(zhǎng)為,求出3個(gè)矩形的面積后可得關(guān)于的函數(shù)解析式.

2)利用基本不等式可求的最小值及何時(shí)取最小值.

(1)花圃①的另一條邊的長(zhǎng)為,

花圃②與③一邊的長(zhǎng)為,另一條邊的長(zhǎng)為,

所以

,

因?yàn)?/span>,故

,.

2)由基本不等式可得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,

故當(dāng)(米)時(shí),).

答:當(dāng)(米)時(shí),).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)A的極坐標(biāo)(),直線l的極坐標(biāo)方程為ρcos(θ)=a,.

(1)若點(diǎn)A在直線l上,求直線l的直角坐標(biāo)方程;

(2)C的參數(shù)方程為(為參數(shù)),若直線與圓C相交的弦長(zhǎng)為,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市2011年至2017年新開(kāi)樓盤(pán)的平均銷(xiāo)售價(jià)格(單位:千元/平方米)的統(tǒng)計(jì)數(shù)據(jù)如下表:

年份

2011

2012

2013

2014

2015

2016

2017

年份代號(hào)

1

2

3

4

5

6

7

銷(xiāo)售價(jià)格

3

3.4

3.7

4.5

4.9

5.3

6

(1)求關(guān)于x的線性回歸方程;

(2)利用(1)中的回歸方程,分析2011年至2017年該市新開(kāi)樓盤(pán)平均銷(xiāo)售價(jià)格的變化情況,并預(yù)測(cè)該市2019年新開(kāi)樓盤(pán)的平均銷(xiāo)售價(jià)格。

附:參考公式: ,,其中為樣本平均值。

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,過(guò)且斜率為的直線交于,兩點(diǎn),

(1)求的方程;

(2)求過(guò)點(diǎn),且與的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于,兩點(diǎn).

(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若點(diǎn)的極坐標(biāo)為,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某品種一批樹(shù)苗生長(zhǎng)情況,在該批樹(shù)苗中隨機(jī)抽取了容量為120的樣本,測(cè)量樹(shù)苗高度(單位:cm),經(jīng)統(tǒng)計(jì),其高度均在區(qū)間[19,31]內(nèi),將其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6組,制成如圖所示的頻率分布直方圖.其中高度為27 cm及以上的樹(shù)苗為優(yōu)質(zhì)樹(shù)苗.

(1)求圖中a的值

(2)已知所抽取的這120棵樹(shù)苗來(lái)自于A,B兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表:

A試驗(yàn)區(qū)

B試驗(yàn)區(qū)

合計(jì)

優(yōu)質(zhì)樹(shù)苗

20

非優(yōu)質(zhì)樹(shù)苗

60

合計(jì)

將列聯(lián)表補(bǔ)充完整,并判斷是否有99.9%的把握認(rèn)為優(yōu)質(zhì)樹(shù)苗與A,B兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說(shuō)明理由;

(3)用樣本估計(jì)總體,若從這批樹(shù)苗中隨機(jī)抽取4棵,其中優(yōu)質(zhì)樹(shù)苗的棵數(shù)為X,求X的分布列和數(shù)學(xué)期望EX

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)令,判斷g(x)的單調(diào)性;

(2)當(dāng)x>1時(shí),,求a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列中,.

(1)是否存在實(shí)數(shù),使數(shù)列是等比數(shù)列?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由;

(2)若是數(shù)列的前項(xiàng)和,求滿足的所有正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,,,的中點(diǎn).

(1)證明:平面

(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案