精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)
已知橢圓E:(a>b>0)的離心率e=,左、右焦點分別為F1、F2,點P(2,),點F2在線段PF1的中垂線上
(1)求橢圓E的方程;
(2)設l1l2是過點G(,0)且互相垂直的兩條直線,l1交E于A,B兩點,l2交E于C,D兩點,求l1的斜率k的取值范圍;
(3)在(2)的條件下,設AB,CD的中點分別為M,N,試問直線MN是否恒過定點?
若經過,求出該定點坐標;若不經過,請說明理由。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓方程為,射線(x≥0)與橢圓的交點為M,過M作傾斜角互補的兩條直線,分別與橢圓交于A、B兩點(異于M).
(Ⅰ)求證直線AB的斜率為定值;
(Ⅱ)求△面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的上、下頂點分別為是橢圓上兩個不同的動點.
(I)求直線交點的軌跡C的方程;
(Ⅱ)若過點F(0,2)的動直線z與曲線C交于A、B兩點,問在y軸上是否存在定點E,使得?若存在,求出E點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

橢圓的一個焦點(c為橢圓的半焦距).
(1)求橢圓的方程;
(2)若為直線上一點,為橢圓的左頂點,連結交橢圓于點,求的取值范圍;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)
橢圓與拋物線的一個交點為M,拋物線在點M處的切線過橢圓的右焦點F.

(Ⅰ)若M,求的標準方程;
(II)求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

過橢圓內一點引一條弦,使得弦被點平分,則此弦所在的直線方程為     

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若橢圓經過原點,且焦點為F1(1,0)、F2(3,0),則其離心率為( )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)
已知過橢圓C:=1(a>b>0)右焦點F且斜率為1的直線交橢圓C于A,B兩點,N為弦AB的中點;又函數圖象的一條對稱軸的方程是.
(1)求橢圓C的離心率e與直線AB的方程;
(2)對于任意一點M∈C,試證:總存在角θ(θ∈R)使等式+成立.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

.已知為正數,,其中是常數,且的最小值是,滿足條件的點是橢圓一弦的中點,則此弦所在的直線方程為
A.B.C.D.

查看答案和解析>>

同步練習冊答案