【題目】一同學(xué)在電腦中打出若干個(gè)圈:○●○○●○○○●○○○○●○○○○○●若將此若干個(gè)圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前2012個(gè)圈中的●的個(gè)數(shù)是 ( )

A. B. C. D.

【答案】C

【解析】

把每個(gè)實(shí)心圓和它前面的連續(xù)的空心圓看成一組,每組只有一個(gè)實(shí)心圓,且每一組圓的個(gè)數(shù)等于2,3,4,…, 這是一個(gè)等差數(shù)列.根據(jù)等差數(shù)列的求和公式可以算出第2012個(gè)圓在之前有多少個(gè)整組,即可得答案

根據(jù)題意,將圓分組:

第一組:○●,有2個(gè)圓;

第二組:○○●,有3個(gè)圓;

第三組:○○○●,有4個(gè)圓;

每組的最后為一個(gè)實(shí)心圓;

每組圓的總個(gè)數(shù)構(gòu)成了一個(gè)等差數(shù)列,前n組圓的總個(gè)數(shù)為sn=2+3+4+…+(n+1)=

易得 ,則在前2012個(gè)圈中包含了61個(gè)整組,

即有61個(gè)黑圓,故答案為:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)求函數(shù)的零點(diǎn);

(Ⅱ)討論在區(qū)間上的單調(diào)性;

(Ⅲ)在區(qū)間上,是否存在最小值?若存在,求出最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)xOy,為兩個(gè)平面直角坐標(biāo)系,它們具有相同的原點(diǎn),Ox正方向到正方向的角度為θ,那么對(duì)于任意的點(diǎn)M,在xOy下的坐標(biāo)為(x,y),那么它在坐標(biāo)系下的坐標(biāo)()可以表示為:=xcosθ+ysinθ,=y(tǒng)cosθ-xsinθ.根據(jù)以上知識(shí)求得橢圓3-1=0的離心率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九大提出,加快水污染防治,建設(shè)美麗中國(guó).根據(jù)環(huán)保部門對(duì)某河流的每年污水排放量(單位:噸)的歷史統(tǒng)計(jì)數(shù)據(jù),得到如下頻率分布表:

將污水排放量落入各組的頻率作為概率,并假設(shè)每年該河流的污水排放量相互獨(dú)立.

(1)求在未來(lái)3年里,至多1年污水排放量的概率;(2)該河流的污水排放對(duì)沿河的經(jīng)濟(jì)影響如下:當(dāng)時(shí),沒有影響;當(dāng)時(shí),經(jīng)濟(jì)損失為10萬(wàn)元;當(dāng)時(shí),經(jīng)濟(jì)損失為60萬(wàn)元.為減少損失,現(xiàn)有三種應(yīng)對(duì)方案:

方案一:防治350噸的污水排放,每年需要防治費(fèi)3.8萬(wàn)元;

方案二:防治310噸的污水排放,每年需要防治費(fèi)2萬(wàn)元;

方案三:不采取措施.

試比較上述三種文案,哪種方案好,并請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

設(shè)函數(shù)fx=x+ax2+blnx,曲線y=fx)過(guò)P1,0),且在P點(diǎn)處的切斜線率為2.

I)求a,b的值;

II)證明:f(x)≤2x-2。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)判斷函數(shù)的單調(diào)性;

(2)若,當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(sin 2x,1),B,設(shè)函數(shù)f(x)=(xR),其中O為坐標(biāo)原點(diǎn).

(1)求函數(shù)f(x)的最小正周期;

(2)當(dāng)x時(shí),求函數(shù)f(x)的最大值與最小值;

(3)求函數(shù)f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績(jī)是否與性別有關(guān),先統(tǒng)計(jì)本校高三年級(jí)每個(gè)學(xué)生一學(xué)期數(shù)學(xué)成績(jī)平均分(采用百分制),剔除平均分在40分以下的學(xué)生后,共有男生300名,女生200名.現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績(jī)分為6組,得到如下所示頻數(shù)分布表.

分?jǐn)?shù)段

[40,50)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

3

9

18

15

6

9

6

4

5

10

13

2

(1)估計(jì)男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表),從計(jì)算結(jié)果看,數(shù)學(xué)成績(jī)與性別是否有關(guān);

(2)規(guī)定80分以上為優(yōu)分(含80分),請(qǐng)你根據(jù)已知條件作出2×2列聯(lián)表,并判斷是否有90%以上的把握認(rèn)為“數(shù)學(xué)成績(jī)與性別有關(guān)”.

優(yōu)分

非優(yōu)分

合計(jì)

男生

女生

附表及公式:

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)討論單調(diào)性;

2)當(dāng)時(shí),函數(shù)的最大值為,求不超過(guò)的最大整數(shù) .

查看答案和解析>>

同步練習(xí)冊(cè)答案