5.設(shè)向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(m+1,-m),$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù)m的值為( 。
A.-1B.1C.-$\frac{1}{3}$D.$-\frac{2}{3}$

分析 由$\overrightarrow{a}$⊥$\overrightarrow$,可得$\overrightarrow{a}$•$\overrightarrow$=0.

解答 解:∵$\overrightarrow{a}$⊥$\overrightarrow$,
∴$\overrightarrow{a}$•$\overrightarrow$=m+1+2(-m)=0,
解得m=1.
故選:B.

點(diǎn)評 本題考查了向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=axln(x+1)+x+1(x>-1,a∈R).
(1)若$a=\frac{1}{e}$,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x≥0時(shí),不等式f(x)≤ex恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a1a3=64,a2+a4=72,數(shù)列{bn}的前n向和Sn滿足Sn=$\frac{{n}^{2}+n}{2}$
(1)求數(shù)列{an}的通項(xiàng)an及數(shù)列{bn}的通項(xiàng)bn
(2)設(shè)cn=$\frac{1}{_{n}•lo{g}_{2}{a}_{n}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知拋物線關(guān)于y軸對稱,頂點(diǎn)在原點(diǎn),且過點(diǎn)M(x0,3),點(diǎn)M到焦點(diǎn)的距離為4,則OM(O為坐標(biāo)原點(diǎn))等于( 。
A.2$\sqrt{3}$B.$\sqrt{21}$C.$\frac{\sqrt{45}}{2}$D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)向量$\overrightarrow{a}$=(4,m),$\overrightarrow$=(1,-2),且$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$-2$\overrightarrow$|=2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.現(xiàn)有一個(gè)以O(shè)A、OB為半徑的扇形池塘,在OA、OB上分別取點(diǎn)C、D,作DE∥OA、CF∥OB分別交弧AB于點(diǎn)E、F,且BD=AC,現(xiàn)用漁網(wǎng)沿著DE、EO、OF、FC將池塘分成如圖所示的養(yǎng)殖區(qū)域.已知OA=1km,∠AOB=$\frac{π}{2}$,∠EOF=θ(0<θ<$\frac{π}{2}$).
(1)若區(qū)域Ⅱ的總面積為$\frac{1}{4}k{m^2}$,求θ的值;
(2)若養(yǎng)殖區(qū)域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分別是30萬元、40萬元、20萬元,試問:當(dāng)θ為多少時(shí),年總收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知復(fù)數(shù)z滿足$z+\overline z=6$,|z|=5.
(1)求復(fù)數(shù)z的虛部;
(2)求復(fù)數(shù)$\frac{z}{1-i}$的實(shí)部.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知四棱錐P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PB=PD=2,PA=$\sqrt{6}$.
(Ⅰ)求證:BD⊥PC;
(Ⅱ)若E是PA的中點(diǎn),求三棱錐P-BCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.角A、B、C為△ABC的三個(gè)內(nèi)角,函數(shù)f(x)=2sin(x-A)cosx+sin(B+C)(x∈R)的圖象關(guān)于直線x=$\frac{5π}{12}$對稱,則A=( 。
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊答案