若函數(shù)f(x)=sin(ωx+φ)的圖象(部分)如圖示,則ω和φ的取值是(  )
分析:根據(jù)函數(shù)f(x)=sin(ωx+φ)的圖象,可分析出函數(shù)的周期,確定ω的值,將(
π
3
,1)代入解析式,可求出φ值,進(jìn)而求出函數(shù)的解析式.
解答:解:由圖可得:
T
4
=
π
3
-(-
π
3
)
=
3

∴T=
3
,ω=
3
4

將(
π
3
,1)代入f(x)=sin(
3
4
x+φ)得
sin(
π
4
+φ)=1
φ=
π
4
滿足條件
故選A
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)正弦型函數(shù)解析式的求法,其中關(guān)鍵是要根據(jù)圖象分析出函數(shù)的最值,周期等,進(jìn)而求出A,ω和φ值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(3x+φ)的圖象關(guān)于直線x=
3
對(duì)稱(chēng),則φ的最小正值等于(  )
A、
π
8
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(x+?)是偶函數(shù),則?可取的一個(gè)值為                  ( 。
A、?=-π
B、?=-
π
2
C、?=-
π
4
D、?=-
π
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下四個(gè)命題:
①函數(shù)f(x)=sin(
π
3
-2x)的一個(gè)增區(qū)間是[
12
11π
12
];
②若函數(shù)f(x)=sin(ωx+φ)為奇函數(shù),則φ為π的整數(shù)倍;
③對(duì)于函數(shù)f(x)=tan(2x+
π
3
),若f(x1)=f(x2),則x1-x2必是π的整數(shù)倍;
④函數(shù)y=2sin(2x+
π
3
)的圖象關(guān)于點(diǎn)(
π
3
,0)對(duì)稱(chēng).
其中正確的命題是
 
.(填上正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(ωx+φ)(|φ|<
π
2
)的圖象(部分)如圖所示,則f(x)的解析式是
f(x)=sin(
1
2
x+
π
6
f(x)=sin(
1
2
x+
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(ωx+
π
4
)的圖象的相鄰兩條對(duì)稱(chēng)軸之間的距離等于
π
3
,則ω=
±3
±3

查看答案和解析>>

同步練習(xí)冊(cè)答案