解:(Ⅰ)當(dāng)a=1時,函數(shù)f(x)=x-lnx,x∈(0,+∞)
∵f′(x)=1-
,令f'(x)=0得x=1
∵當(dāng)x∈(0,1)時,f'(x)<0,∴函數(shù)f(x)在(0,1)上為減函數(shù)
∵當(dāng)x∈(1,+∞)時f'(x)>0,∴函數(shù)f(x)在(1,+∞)上為增函數(shù)
∴當(dāng)x=1時,函數(shù)f(x)有最小值,f(x)
最小值=f(1)=1
(Ⅱ)∵f′(x)=a-
,
若a≤0,則對任意的x∈[1,+∞)都有f'(x)<0,∴函數(shù)f(x)在[1,+∞)上為減函數(shù)
∴函數(shù)f(x)在[1,+∞)上有最大值,沒有最小值,f(x)
最大值=f(1)=a;
若a>0,令f'(x)=0得x=
當(dāng)0<a<1時,
>1,當(dāng)x∈(1,
)時f'(x)<0,函數(shù)f(x)在(1,
)上為減函數(shù)
當(dāng)x∈(
,+∞)時f'(x)>0∴函數(shù)f(x)在(
,+∞)上為增函數(shù)
∴當(dāng)x=
時,函數(shù)f(x)有最小值,f(x)最小值=f(
)=1-ln
當(dāng)a≥1時,
≤1在[1,+∞)恒有f'(x)≥0
∴函數(shù)f(x)在[1,+∞)上為增函數(shù),函數(shù)f(x)在[1,+∞)有最小值,f(x)
最小值=f(1)=a.
綜上得:當(dāng)a≤0時,函數(shù)f(x)在[1,+∞)上有最大值,f(x)
最大值=a;
當(dāng)0<a<1時,函數(shù)f(x)有最小值,f(x)最小值=1-ln
,沒有最大值;
當(dāng)a≥1時,函數(shù)f(x)在[1,+∞)有最小值,f(x)
最小值=a,沒有最大值.
分析:(Ⅰ)把a=1代入求出其導(dǎo)函數(shù),得出其在定義域上的單調(diào)性,即可求出函數(shù)f(x)的最值;
(Ⅱ)先求出其導(dǎo)函數(shù)f′(x)=a-
,通過討論a的取值得出函數(shù)在[1,+∞)上的單調(diào)性,進而求出函數(shù)f(x)在[1,+∞)上的最值.
點評:本題主要考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查分類討論的數(shù)學(xué)思想,屬于中檔題.