已知集合A={x|x<a},B={x|1≤x<2},且A∪(∁UB)=R,則實數(shù)a的取值范圍是(  )
A、a≤1B、a<1
C、a≥2D、a>2
考點:并集及其運算
專題:集合
分析:根據(jù)全集R以及B求出B的補集,由A與B補集的并集為R,確定出a的范圍即可.
解答: 解:∵B={x|1≤x<2},
∴∁RB={x|x<1或x≥2},
∵A={x|x<a},A∪(∁RB)=R,
∴a的范圍為a≥2,
故選:C.
點評:此題考查了并集及其運算,熟練掌握并集的定義是解本題的關(guān)機后.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

己知關(guān)于x的方程(m+3)x2-4mx+2m-1=0 的兩根異號,且負根的絕對值比正根大,那么實數(shù)m的取值范圍是(  )
A、-3<m<0
B、0<m<3
C、m<-3或m>0
D、m<0 或 m>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,對所有n∈N*,都有a1a2…an=n2,則a3=( 。
A、
3
2
B、3
C、9
D、
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={y|y=x2-1(x∈R)},P={x|y=
3-x2
,x∈R},則M∩P=( 。
A、{(-
2
,1),(
2
,1)}
B、{t|1≤t≤
3
}
C、{t|-1≤t≤
3
}
D、{t|0≤t≤
3
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z是非零復(fù)數(shù),
.
z
是z的共軛復(fù)數(shù),則“z+
.
z
=0“是“z為純虛數(shù)”的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既非充分條件又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(1,2)的直線l分別與x軸,y軸的正半軸交于A,B兩點,當(dāng)△AOB(0為坐標原點)的面積最小時,A、B兩點恰好是曲線R:
x
m
+
y2
n
=1(m>0,n>0)的頂點.
(1)求曲線R的方程;
(2)過點P的直線交曲線R于C、D(異于A、B)兩點,求四邊形ACBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.
(2)如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線AD交⊙O于點D,DE⊥AC,交AC的延長線于點E.OE交AD于點F.
①求證:DE是⊙O的切線;②若
AC
AB
=
3
5
,求
AF
DF
的值.
(3)在極坐標系中,圓C的方程為ρ=2
2
sin(θ+
π
4
),以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標原點,設(shè)A(x1,y1),B(x2,y2)是橢圓
x2
m
+
y2
4
=1(m>4)上任意兩點,已知向量
p
=(
x1
m
y1
2
),
q
=(
x2
m
,
y2
2
),若
p
q
的夾角為
π
2
且橢圓的離心率e=
3
2

(1)若直線AB過橢圓的焦點F(c,0)(c為半焦距),求直線AB的斜率k的值;
(2)△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x-|x2-1|-1的零點個數(shù)是( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習(xí)冊答案