如下的三個(gè)圖中,上面的是一個(gè)長(zhǎng)方體截去一個(gè)角所得多面體的直觀圖,它的正視圖和側(cè)視圖在下面畫(huà)出(單位:cm).
(1)在正視圖下面,按照畫(huà)三視圖的要求畫(huà)出該多面體的俯視圖;
(2)按照給出的尺寸,求該多面體的體積;
(3)在所給直觀圖中連接BC′,證明:BC′∥面EFG.

【答案】分析:(1)按照三視圖的要求直接在正視圖下面,畫(huà)出該多面體的俯視圖;
(2)按照給出的尺寸,利用轉(zhuǎn)化思想V=V長(zhǎng)方體-V正三棱錐,求該多面體的體積;
(3)在長(zhǎng)方體ABCD-A′B′C′D′中,連接AD′,在所給直觀圖中連接BC′,證明EG∥BC′,即可證明BC′∥面EFG.
解答:解:(1)如圖

(2)所求多面體的體積
(3)證明:如圖,

在長(zhǎng)方體ABCD-A′B′C′D′中,連接AD′,則AD′∥BC′
因?yàn)镋,G分別為AA′,A′D′中點(diǎn),所以AD′∥EG,從而EG∥BC′,
又EG?平面EFG,所以BC′∥平面EFG;
點(diǎn)評(píng):長(zhǎng)方體的有關(guān)知識(shí)、體積計(jì)算及三視圖的相關(guān)知識(shí),對(duì)三視圖的相關(guān)知識(shí)掌握不到位,求不出有關(guān)數(shù)據(jù).三視圖是新教材中的新內(nèi)容,故應(yīng)該是新高考的熱點(diǎn)之一,要予以足夠的重視.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如下的三個(gè)圖中,上面的是一個(gè)長(zhǎng)方體截去一個(gè)角所得多面體的直觀圖,它的正視圖和側(cè)視圖在下面畫(huà)出(單位:cm).
(1)在正視圖下面,按照畫(huà)三視圖的要求畫(huà)出該多面體的俯視圖;
(2)按照給出的尺寸,求該多面體的體積;
(3)在所給直觀圖中連接BC′,證明:BC′∥面EFG.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年寧夏、海南卷文)(本小題滿分12分)如下的三個(gè)圖中,上面的是一個(gè)長(zhǎng)方體截去一個(gè)角所得多面體的直觀圖,它的正視圖和側(cè)視圖在下面畫(huà)出(單位:cm)。

(1)在正視圖下面,按照畫(huà)三視圖的要求畫(huà)出該多面體的俯視圖;

(2)按照給出的尺寸,求該多面體的體積;

(3)在所給直觀圖中連結(jié),證明:∥面EFG。

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(海南寧夏卷文18)如下的三個(gè)圖中,上面的是一個(gè)長(zhǎng)方體截去一個(gè)角所得多面體的直觀圖,它的正視圖和側(cè)視圖在下面畫(huà)出(單位:cm)。(1)在正視圖下面,按照畫(huà)三視圖的要求畫(huà)出該多面體的俯視圖;(2)按照給出的尺寸,求該多面體的體積;(3)在所給直觀圖中連結(jié),證明:∥面EFG。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(海南寧夏卷文18)如下的三個(gè)圖中,上面的是一個(gè)長(zhǎng)方體截去一個(gè)角所得多面體的直觀圖,它的正視圖和側(cè)視圖在下面畫(huà)出(單位:cm)。(1)在正視圖下面,按照畫(huà)三視圖的要求畫(huà)出該多面體的俯視圖;(2)按照給出的尺寸,求該多面體的體積;(3)在所給直觀圖中連結(jié),證明:∥面EFG。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年福建省高一上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本題滿分12分)

如下的三個(gè)圖中,上面的是一個(gè)長(zhǎng)方體截去一個(gè)角所得多面體的直觀圖,它的正視圖和側(cè)視圖在下面畫(huà)出(單位:

(Ⅰ)在正視圖下面,按照畫(huà)三視圖的要求畫(huà)出該多面體的俯視圖;

(Ⅱ)按照給出的尺寸,求該多面體的體積;

(Ⅲ)在所給直觀圖中連結(jié),證明:∥面

 

查看答案和解析>>

同步練習(xí)冊(cè)答案