【題目】近幾年,由于環(huán)境的污染,霧霾越來(lái)越嚴(yán)重,某環(huán)保公司銷(xiāo)售一種PM2.5顆粒物防護(hù)口罩深受市民歡迎.已知這種口罩的進(jìn)價(jià)為40元,經(jīng)銷(xiāo)過(guò)程中測(cè)出年銷(xiāo)售量y(萬(wàn)件)與銷(xiāo)售單價(jià)x(元)存在如圖所示的一次函數(shù)關(guān)系,每年銷(xiāo)售這種口罩的總開(kāi)支z(萬(wàn)元)(不含進(jìn)價(jià))與年銷(xiāo)量y(萬(wàn)件)存在函數(shù)關(guān)系z(mì)=10y+42.5.
(I)求y關(guān)于x的函數(shù)關(guān)系;
(II)寫(xiě)出該公司銷(xiāo)售這種口罩年獲利W(萬(wàn)元)關(guān)于銷(xiāo)售單價(jià)x(元)的函數(shù)關(guān)系式
(年獲利=年銷(xiāo)售總金額﹣年銷(xiāo)售口罩的總進(jìn)價(jià)﹣年總開(kāi)支金額);當(dāng)銷(xiāo)售單價(jià)x為何值時(shí),年獲利最大?最大獲利是多少?
(III)若公司希望該口罩一年的銷(xiāo)售獲利不低于57.5萬(wàn)元,則該公司這種口罩的銷(xiāo)售單價(jià)應(yīng)定在什么范圍?在此條件下要使口罩的銷(xiāo)售量最大,你認(rèn)為銷(xiāo)售單價(jià)應(yīng)定為多少元?
【答案】解:(I)由題意,設(shè)y=kx+b,圖象過(guò)點(diǎn)(70,5),(90,3), ,得k=﹣ ,b=12,
∴
(II) 由題意,得
w=y(x﹣40)﹣z
=y(x﹣40)﹣(10y+42.5)
=(﹣ x+12)(x﹣40)﹣10(﹣ x+12)﹣42.5
=﹣0.1x2+17x﹣642.5=﹣ (x﹣85)2+80.
當(dāng)銷(xiāo)售單價(jià)為85元時(shí),年獲利最大,最大值為80萬(wàn)元
(III)令W≥57.5,﹣0.1x2+17x﹣642.5≥57.5,
整理得x2﹣170x+7000≤0,解得70≤x≤100.
故要使該口罩一年的銷(xiāo)售獲利不低于57.5萬(wàn)元,單價(jià)應(yīng)在70元到100元之間.
又因?yàn)殇N(xiāo)售單價(jià)越低,銷(xiāo)售量越大,所以要使銷(xiāo)售量最大且獲利不低于57.5萬(wàn)元,銷(xiāo)售單價(jià)應(yīng)定為70元.
【解析】(I)由圖象可知y關(guān)于x的函數(shù)關(guān)系式是一次函數(shù),設(shè)y=kx+b,用“兩點(diǎn)法”可求解析式;(II)根據(jù)年獲利=年銷(xiāo)售總金額一年銷(xiāo)售產(chǎn)品的總進(jìn)價(jià)一年總開(kāi)支金額,列出函數(shù)關(guān)系式;(III)令W≥57.5,從而確定銷(xiāo)售單價(jià)x的范圍,及二次函數(shù)w最大時(shí),x的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=( )x﹣2x .
(1)若f(x)= ,求x的值;
(2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)對(duì)所有θ∈[0, ]都成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】曲線C上的動(dòng)點(diǎn)M到定點(diǎn)F(1,0)的距離和它到定直線x=3的距離之比是1: .
(1)求曲線C的方程;
(2)過(guò)點(diǎn)F(1,0)的直線l與C交于A,B兩點(diǎn),當(dāng)△ABO面積為 時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=log2x﹣3sin( x)零點(diǎn)的個(gè)數(shù)是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線C: =1,點(diǎn)M與曲線C的焦點(diǎn)不重合,若點(diǎn)M關(guān)于曲線C的兩個(gè)焦點(diǎn)的對(duì)稱(chēng)點(diǎn)分別為A,B,M,N是坐標(biāo)平面內(nèi)的兩點(diǎn),且線段MN的中點(diǎn)P恰好在雙曲線C上,則|AN﹣BN|= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】;給定函數(shù)① ,② ,③y=|x﹣1|,④y=2x+1 , 其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號(hào)是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的圖象與x軸相鄰兩個(gè)交點(diǎn)間的距離為 ,且圖象上一個(gè)最低點(diǎn)為M( ,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)x∈[ , ]時(shí),求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}是公差d不為0的等差數(shù)列,a1=2,Sn為其前n項(xiàng)和.
(1)當(dāng)a3=6時(shí),若a1 , a3 , , …, 成等比數(shù)列(其中3<n1<n2<…<nk),求nk的表達(dá)式;
(2)是否存在合適的公差d,使得{an}的任意前3n項(xiàng)中,前n項(xiàng)的和與后n項(xiàng)的和的比值等于定常數(shù)?求出d,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一四棱錐P﹣ABCD的三視圖如圖所示,E是側(cè)棱PC上的動(dòng)點(diǎn).
(Ⅰ)求四棱錐P﹣ABCD的體積.
(Ⅱ)若點(diǎn)E為PC的中點(diǎn),AC∩BD=O,求證:EO∥平面PAD;
(Ⅲ)是否不論點(diǎn)E在何位置,都有BD⊥AE?證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com