【題目】黃岡“一票通”景區(qū)旅游年卡,是由黃岡市旅游局策劃,黃岡市大別山旅游公司推出的一項(xiàng)惠民工程,持有旅游年卡一年內(nèi)可不限次暢游全市19家簽約景區(qū).為了解市民每年旅游消費(fèi)支出情況單位:百元,相關(guān)部門(mén)對(duì)已游覽某簽約景區(qū)的游客進(jìn)行隨機(jī)問(wèn)卷調(diào)查,并把得到的數(shù)據(jù)列成如表所示的頻數(shù)分布表:
組別 | |||||
頻數(shù) | 10 | 390 | 400 | 188 | 12 |
求所得樣本的中位數(shù)精確到百元;
根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為市民的旅游費(fèi)用支出服從正態(tài)分布,若該市總?cè)丝跒?/span>750萬(wàn)人,試估計(jì)有多少市民每年旅游費(fèi)用支出在7500元以上;
若年旅游消費(fèi)支出在百元以上的游客一年內(nèi)會(huì)繼續(xù)來(lái)該景點(diǎn)游玩現(xiàn)從游客中隨機(jī)抽取3人,一年內(nèi)繼續(xù)來(lái)該景點(diǎn)游玩記2分,不來(lái)該景點(diǎn)游玩記1分,將上述調(diào)查所得的頻率視為概率,且游客之間的選擇意愿相互獨(dú)立,記總得分為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望.
參考數(shù)據(jù):,;
【答案】百元;萬(wàn);分布列見(jiàn)解析,.
【解析】
設(shè)樣本的中位數(shù)為x,可得,解得x;
,,,旅游費(fèi)用支出在7500元以上的概率為,即可估計(jì)有多少萬(wàn)市民旅游費(fèi)用支出在7500元以上;
由表格知一年內(nèi)游客繼續(xù)來(lái)該景點(diǎn)游玩的概率為,X可能取值為3,4,5,6,利用二項(xiàng)分布列即可得出.
解:設(shè)樣本的中位數(shù)為x,則,
解得,所得樣本中位數(shù)為百元;
,,,
旅游費(fèi)用支出在7500元以上的概率為,,估計(jì)有萬(wàn)市民旅游費(fèi)用支出在7500元以上;
由表格知一年內(nèi)游客繼續(xù)來(lái)該景點(diǎn)游玩的概率為,X可能取值為3,4,5,6.
,,,,
故其分布列為:
X | 3 | 4 | 5 | 6 |
P |
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的首項(xiàng),對(duì)任意的,都有,數(shù)列是公比不為的等比數(shù)列.
(1)求實(shí)數(shù)的值;
(2)設(shè)數(shù)列的前項(xiàng)和為,求所有正整數(shù)的值,使得恰好為數(shù)列中的項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:直線(xiàn)關(guān)于圓的圓心距單位圓心到直線(xiàn)的距離與圓的半徑之比.
(1)設(shè)圓,求過(guò)點(diǎn)的直線(xiàn)關(guān)于圓的圓心距單位的直線(xiàn)方程.
(2)若圓與軸相切于點(diǎn),且直線(xiàn)關(guān)于圓的圓心距單位,求此圓的方程.
(3)是否存在點(diǎn),使過(guò)點(diǎn)的任意兩條互相垂直的直線(xiàn)分別關(guān)于相應(yīng)兩圓與的圓心距單位始終相等?若存在,求出相應(yīng)的點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合由滿(mǎn)足下列兩個(gè)條件的數(shù)列構(gòu)成:①②存在實(shí)數(shù)使對(duì)任意正整數(shù)都成立.
(1)現(xiàn)在給出只有5項(xiàng)的有限數(shù)列其中;試判斷數(shù)列是否為集合的元素;
(2)數(shù)列的前項(xiàng)和為且對(duì)任意正整數(shù)點(diǎn)在直線(xiàn)上,證明:數(shù)列并寫(xiě)出實(shí)數(shù)的取值范圍;
(3)設(shè)數(shù)列且對(duì)滿(mǎn)足條件②中的實(shí)數(shù)的最小值都有求證:數(shù)列一定是單調(diào)遞增數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)的參數(shù)方程為(為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線(xiàn)上的點(diǎn)按坐標(biāo)變換得到曲線(xiàn),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系.設(shè)點(diǎn)的極坐標(biāo)為.
(1)求曲線(xiàn)的極坐標(biāo)方程;
(2)若過(guò)點(diǎn)且傾斜角為的直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形為矩形, ,為的中點(diǎn),將沿折起,得到四棱錐,設(shè)的中點(diǎn)為,在翻折過(guò)程中,得到如下有三個(gè)命題:
①平面,且的長(zhǎng)度為定值;
②三棱錐的最大體積為;
③在翻折過(guò)程中,存在某個(gè)位置,使得.
其中正確命題的序號(hào)為__________.(寫(xiě)出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,
(1)求在處的切線(xiàn)方程以及的單調(diào)性;
(2)對(duì),有恒成立,求的最大整數(shù)解;
(3)令,若有兩個(gè)零點(diǎn)分別為,且為的唯一的極值點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“劍橋?qū)W派”創(chuàng)始人之一數(shù)學(xué)家哈代說(shuō)過(guò):“數(shù)學(xué)家的造型,同畫(huà)家和詩(shī)人一樣,也應(yīng)當(dāng)是美麗的”;古希臘數(shù)學(xué)家畢達(dá)哥拉斯創(chuàng)造的“黃金分割”給我們的生活處處帶來(lái)美;我國(guó)古代數(shù)學(xué)家趙爽創(chuàng)造了優(yōu)美“弦圖”.“弦圖”是由四個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形,如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為,則等于( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,直線(xiàn)的極坐標(biāo)方程為,且過(guò)點(diǎn),曲線(xiàn)的參數(shù)方程為 (為參數(shù)).
(Ⅰ)求曲線(xiàn)上的點(diǎn)到直線(xiàn)的距離的最大值;
(Ⅱ)過(guò)點(diǎn)與直線(xiàn)平行的直線(xiàn)與曲線(xiàn) 交于兩點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com