【題目】若f(x)=x2﹣2x﹣4lnx,則f(x)的單調(diào)遞增區(qū)間為(
A.(﹣1,0)
B.(﹣1,0)∪(2,+∞)
C.(2,+∞)
D.(0,+∞)

【答案】C
【解析】解:函數(shù)的定義域為(0,+∞) 求導(dǎo)函數(shù)可得:f′(x)=2x﹣2﹣ ,
令f′(x)>0,可得2x﹣2﹣ >0,∴x2﹣x﹣2>0,∴x<﹣1或x>2
∵x>0,∴x>2
∴f(x)的單調(diào)遞增區(qū)間為(2,+∞)
故選C.
【考點精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,BC=2,原點O是BC的中點,點A的坐標為 ( ,0),點D在平面yOz上,且∠BDC=90°,∠DCB=30°.

(1)求向量 的坐標
(2)求向量 的夾角的余弦值大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD

(1)證明:ACBD;

(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點,且AEEC,求四面體ABCE與四面體ACDE的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】計算下列定積分:
(1) dx
(2) dx
(3)求如圖所示陰影部分的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義域為D的函數(shù)y=f(x),若同時滿足下列條件:
①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間[a,b]D,使f(x)在[a,b]上的值域為[a,b],則把y=f(x),x∈D叫閉函數(shù).
(1)求閉函數(shù)y=x3符合條件②的區(qū)間[a,b];
(2)判斷函數(shù)f(x)= x+ ,(x>0)是否為閉函數(shù)?并說明理由;
(3)已知[a,b]是正整數(shù),且定義在(1,m)的函數(shù)y=k﹣ 是閉函數(shù),求正整數(shù)m的最小值,及此時實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100 個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg).其頻率分布直方圖如下:

(1)設(shè)兩種養(yǎng)殖方法的箱產(chǎn)量相互獨立,記A表示事件:“舊養(yǎng)殖法的箱產(chǎn)量低于50kg,新養(yǎng)殖法的箱產(chǎn)量不低于50kg”,估計A的概率;

(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

箱產(chǎn)量<50kg

箱產(chǎn)量≥50kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計值(精確到0.01).

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】佛山某中學高三(1)班排球隊和籃球隊各有10名同學,現(xiàn)測得排球隊10人的身高(單位:cm)分別是:162、170、171、182、163、158、179、168、183、168,籃球隊10人的身高(單位:cm)分別是:170、159、162、173、181、165、176、168、178、179.
(1)請把兩隊身高數(shù)據(jù)記錄在如圖所示的莖葉圖中,并指出哪個隊的身高數(shù)據(jù)方差較。o需計算);

(2)現(xiàn)從兩隊所有身高超過178cm的同學中隨機抽取三名同學,則恰好兩人來自排球隊一人來自籃球隊的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R.
(1)求f(x)的周期及單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,f(A)=﹣1,a= ,且向量 共線,求邊長b和c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次數(shù)學測驗共有10道選擇題,每道題共有四個選項,且其中只有一個選項是正確的,評分標準規(guī)定:每選對1道題得5,不選或選錯得0,某考試每道都選并能確定其中有6道題能選對,其余4道題無法確定正確選項但這4道題中有2道能排除兩個錯誤選項,2題只能排除一個錯誤選項于是該生做這4道題時每道題都從不能排除的選項中隨機挑選一個選項做答,且各題做答互不影響

()求該考生本次測驗選擇題得50分的概率;

()求該考生本次測驗選擇題所得分數(shù)的分布列和數(shù)學期望

查看答案和解析>>

同步練習冊答案