(本小題滿(mǎn)分13分)
已知圓C1的方程為,定直線l的方程為.動(dòng)圓C與圓C1外切,且與直線l相切.
(Ⅰ)求動(dòng)圓圓心C的軌跡M的方程;
(II)斜率為k的直線l與軌跡M相切于第一象限的點(diǎn)P,過(guò)點(diǎn)P作直線l的垂線恰好經(jīng)過(guò)點(diǎn)A(0,6),并交軌跡M于異于點(diǎn)P的點(diǎn)Q,記為軌跡M與直線PQ圍成的封閉圖形的面積,求的值.
解(Ⅰ)設(shè)動(dòng)圓圓心C的坐標(biāo)為,動(dòng)圓半徑為R,則
,且 ————2分
可得 .
由于圓C1在直線l的上方,所以動(dòng)圓C的圓心C應(yīng)該在直線l的上方,所以有,從而得,整理得,即為動(dòng)圓圓心C的軌跡M的方程. ————5分
(II)如圖示,設(shè)點(diǎn)P的坐標(biāo)為,則切線的斜率為,可得直線PQ的斜率為,所以直線PQ的方程為.由于該直線經(jīng)過(guò)點(diǎn)A(0,6),所以有,得.因?yàn)辄c(diǎn)P在第一象限,所以,點(diǎn)P坐標(biāo)為(4,2),直線PQ的方程為. ——————9分
把直線PQ的方程與軌跡M的方程聯(lián)立得,解得或4,可得點(diǎn)Q的坐標(biāo)為.所以
. ——————13分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿(mǎn)分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫(huà)出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿(mǎn)分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿(mǎn)分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿(mǎn)分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,為的中點(diǎn)。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來(lái)源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿(mǎn)分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項(xiàng)和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com