【題目】有3名男生,4名女生,在下列不同要求下,求不同的排列方法總數(shù).

(1)全體排成一行,其中男生必須排在一起;

(2)全體排成一行,男、女各不相鄰;

(3)全體排成一行,其中甲不在最左邊,乙不在最右邊;

(4)全體排成一行,其中甲、乙、丙三人從左至右的順序不變.

【答案】(1)720;(2)144;(3)3720;(4)840.

【解析】分析:(1)相鄰問題用捆綁法,即將男生看成一個整體,進行全排列(2)不相鄰問題用插空法:先排好男生,然后將女生插入其中的四個空位,(3)特殊位置先排列,分情況討論,最后用加法原理求排列數(shù),(4)定序排列.先求全排列,再除以順序數(shù)即可.

詳解:

(1)捆綁法. 將男生看成一個整體,進行全排列再與其他元素進行全排列. 共有種.

(2)插空法. 先排好男生,然后將女生插入其中的四個空位,共有種.

(3)位置分析法. 先排最右邊,除去甲外,有種,余下的6個位置全排有種,但應(yīng)剔除乙在最右邊的排法數(shù)種.則符合條件的排法共有種.

(4)定序排列. 第一步,設(shè)固定甲、乙、丙從左至右順序的排列總數(shù)為N,第二步,對甲、乙、丙進行全排列,則為七個人的全排列,因此,種.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】九章算術(shù)是我國古代著名數(shù)學(xué)經(jīng)典其中對勾股定理的論述比西方早一千多年,其中有這樣一個問題:“今有圓材埋在壁中,不知大小以鋸鋸之,深一寸,鋸道長一尺問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深一寸,鋸道長一尺問這塊圓柱形木料的直徑是多少?長為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示陰影部分為鑲嵌在墻體內(nèi)的部分已知弦尺,弓形高寸,估算該木材鑲嵌在墻中的體積約為( )(注:1丈寸,,)

A. 600立方寸 B. 610立方寸 C. 620立方寸 D. 633立方寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,.

(1),求的值;

(2),求的值;

(3)若展開式中所有無理項的二項式系數(shù)和,數(shù)列是各項都大于1的數(shù)組成的數(shù)列,試用數(shù)學(xué)歸納法證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)常數(shù)a使方程sinx+ cosx=a在閉區(qū)間[0,2π]上恰有三個解x1 , x2 , x3 , 則x1+x2+x3=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論正確的是( )

A. 函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,若,則函數(shù)在區(qū)間內(nèi)無零點

B. 函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,若,則函數(shù)在區(qū)間內(nèi)可能有零點,且零點個數(shù)為偶數(shù)

C. 函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,若,則函數(shù)在區(qū)間內(nèi)必有零點,且零點個數(shù)為奇數(shù)

D. 函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,若,則函數(shù)在區(qū)間內(nèi)必有零點,但是零點個數(shù)不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,, ,分別為的三邊所對的角

(Ⅰ)求角的大小

(Ⅱ)若,成等比數(shù)列,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為評估設(shè)備M生產(chǎn)某種零件的性能,從設(shè)備M生產(chǎn)零件的流水線上隨機抽取100件零件最為樣本,測量其直徑后,整理得到下表:

直徑/mm

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計算,樣本的平均值μ=65,標準差=2.2,以頻率值作為概率的估計值.
(1)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為X,并根據(jù)以下不等式進行評判(p表示相應(yīng)事件的頻率):①p(μ﹣σ<X≤μ+σ)≥0.6826.②P(μ﹣σ<X≤μ+2σ)≥0.9544③P(μ﹣3σ<X≤μ+3σ)≥0.9974.評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;僅滿足其中兩個,則等級為乙,若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁.試判斷設(shè)備M的性能等級.
(2)將直徑小于等于μ﹣2σ或直徑大于μ+2σ的零件認為是次品
(i)從設(shè)備M的生產(chǎn)流水線上隨意抽取2件零件,計算其中次品個數(shù)Y的數(shù)學(xué)期望EY;
(ii)從樣本中隨意抽取2件零件,計算其中次品個數(shù)Z的數(shù)學(xué)期望EZ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (, 為自然對數(shù)的底數(shù)).

(1)求函數(shù)的極值;

(2)當時,若直線與曲線沒有公共點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年汕頭市開展了一場創(chuàng)文行動一直以來,汕頭市部分市民文明素質(zhì)有待提高、環(huán)境臟亂差現(xiàn)象突出、交通秩序混亂、占道經(jīng)營和違章搭建問題嚴重,為了解決這一老大難問題,汕頭市政府打了一場史無前例的“創(chuàng)文”仗,目的是全力改善汕頭市環(huán)境、衛(wèi)生道路、交通各方面不文明現(xiàn)象,同時爭奪2020年“全國文明城市”稱號隨著創(chuàng)文活動的進行,我區(qū)生活環(huán)境得到了很大的改善,但因為違法出行的三輪車減少,市民出行偶有不便有一商人從中看到商機,打算開一家汽車租賃公司,他委托一家調(diào)查公司進行市場調(diào)查,調(diào)查公司的調(diào)查結(jié)果如表:

每輛車月租金定價

3000

3050

3100

3150

3200

3250

能出租的車輛數(shù)

100

99

98

97

96

95

若他打算購入汽車100輛用于租賃業(yè)務(wù),通過調(diào)查發(fā)現(xiàn)租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50由上表,他決定每輛車月租金定價滿足:

為方便預(yù)測,月租金定價必須為50的整數(shù)倍;不低于3000元;定價必須使得公司每月至少能租10輛汽車設(shè)租賃公司每輛車月租金定價為x元時,每月能出租的汽車數(shù)量為y輛.

(1)按調(diào)查數(shù)據(jù),請將y表示為關(guān)于x的函數(shù).

(2)當x何值時,租賃公司月收益最大?最大月收益是多少?

查看答案和解析>>

同步練習(xí)冊答案