7.若命題p:?x∈R,使x2+ax+1<0,則¬p:?x∈R,使x2+ax+1≥0.

分析 直接利用特稱命題的否定是全稱命題寫出結果即可.

解答 解:因為特稱命題的否定是全稱命題,
所以,命題p:?x∈R,使x2+ax+1<0,則¬p:?x∈R,使x2+ax+1≥0.
故答案為:?x∈R,使x2+ax+1≥0.

點評 本題考查命題的否定,特稱命題與全稱命題的否定關系,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)-cos2x.
(Ⅰ)求f($\frac{π}{3}$)的值;
(Ⅱ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{m{x^2}+1,x≥0}\\{({m^2}-1){2^x},x<0}\end{array}}$在(-∞,+∞)上是具有單調(diào)性,則實數(shù)m的取值范圍(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,四邊形ABCD為矩形,PA⊥平面ABCD,DE∥PA.
(Ⅰ)求證:BC⊥CE;
(Ⅱ)若直線m?平面PAB,試判斷直線m與平面CDE的位置關系,并說明理由;
(Ⅲ)若AB=PA=2DE=2,AD=3,求三棱錐E-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.對于任意實數(shù)x,符號[x]表示不超過x的最大整數(shù),例如[2]=2;[2.1]=2;[-2.2]=-3.函數(shù)y=[x]叫做“取整函數(shù)”,它在數(shù)學本身和生產(chǎn)實踐中有廣泛的應用.則[log31]+[log32]+[log33]+…+[log311]的值為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}2x-1,x>0\\{x^2}+x,x≤0\end{array}$,若函數(shù)g(x)=f(x)-m有三個零點,則實數(shù)m的取值范圍是$(-\frac{1}{4},0]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.某公司對新招聘的員工張某進行綜合能力測試,共設置了A、B、C三個測試項目.假定張某通過項目A的概率為$\frac{1}{2}$,通過項目B、C的概率均為a(0<a<1),且這三個測試項目能否通過相互獨立.
(1)用隨機變量X表示張某在測試中通過的項目個數(shù),求X的概率分布和數(shù)學期望E(X)(用a表示);
(2)若張某通過一個項目的概率最大,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.4和10的等差中項是7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)y=$\sqrt{x-5}+\frac{1}{2-x}$的定義域為[5,+∞).

查看答案和解析>>

同步練習冊答案