已知向量為常數(shù)且),函數(shù)上的最大值為
(1)求實數(shù)的值;
(2)把函數(shù)的圖象向右平移個單位,可得函數(shù)的圖象,若上為增函數(shù),求取最大值時的單調(diào)增區(qū)間.

(1);(2)

解析試題分析:(1)把向量,為常數(shù)且),代入函數(shù)整理,利用兩角和的正弦函數(shù)化為,根據(jù)最值求實數(shù)的值;(2)由題意把函數(shù)的圖象向右平移個單位,可得函數(shù)的圖象,利用上為增函數(shù),就是周期,求得的最大值,從而求出單調(diào)增區(qū)間.
試題解析:(1)
因為函數(shù)上的最大值為,所以
(2)由(1)知:
把函數(shù)的圖象向右平移個單位,可得函數(shù)
上為增函數(shù)的周期
所以的最大值為,
此時單調(diào)增區(qū)間為
考點:1.平面向量數(shù)量積的運算;2.三角恒等變換;3.三角函數(shù)的最值;4.三角函數(shù)的單調(diào)性;4、函數(shù)的圖象變換.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的圖像經(jīng)過點,,當(dāng)時,恒有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

下圖是函數(shù))的一段圖像.
 
(1)寫出此函數(shù)的解析式;
(2)求該函數(shù)的對稱軸方程和對稱中心坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)=sin(-2x+)+,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間.
(2)函數(shù)f(x)的圖象可以由函數(shù)y=sin 2x(x∈R)的圖象經(jīng)過怎樣的變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的部分圖象如圖所示,其中點A為最高點,點B,C為圖象與軸的交點,在中,角對邊為,,且滿足.

(1)求的面積;
(2)求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,函數(shù)
(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;
(2)已知中,角的對邊分別為,若,
的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)平面向量,,,
⑴若,求的值;(2)若,求函數(shù)的最大值,并求出相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=Asin(ωx+)(其中A>0,ω>0,-π<≤π)在x=處取得最大值2,其圖象與x軸的相鄰兩個交點的距離為.
(1)求f(x)的解析式;
(2)求函數(shù)g(x)=的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

)化簡:

查看答案和解析>>

同步練習(xí)冊答案