已知F1(-c,0),F(xiàn)2(c,0)為橢圓的兩個(gè)焦點(diǎn),P為橢圓上一點(diǎn)且,則此橢圓離心率的取值范圍是   
【答案】分析:先由橢圓的定義得:PF1+PF2=2a平方得:|PF1|2+|PF2|2+2PF1PF2=4a2,由余弦定理得:|PF1|2+|PF2|2-2|PF1|•|PF2|cos∠F1PF2=F1F22=4c2結(jié)合題中向量條件得到:cos∠F1PF2=和|PF1|•|PF2|=2a2-3c2,最后利用三角函數(shù)的性質(zhì)及基本不等式即可求得此橢圓離心率的取值范圍.
解答:解:由橢圓的定義得:
PF1+PF2=2a
平方得:|PF1|2+|PF2|2+2PF1PF2=4a2.①
又∵,
∴|PF1|•|PF2|cos∠F1PF2=c2,②
由余弦定理得:
|PF1|2+|PF2|2-2|PF1|•|PF2|cos∠F1PF2=F1F22=4c2,③
由①②③得:cos∠F1PF2=≤1⇒
|PF1|•|PF2|=2a2-3c2,又|PF1|•|PF2|≤
∴2a2-3c2≤a2⇒a2≤3c2
則此橢圓離心率的取值范圍是:
故答案為:
點(diǎn)評(píng):本題主要考查向量的數(shù)量積運(yùn)算和橢圓的簡(jiǎn)單性質(zhì).考查對(duì)基礎(chǔ)知識(shí)的綜合運(yùn)用.解答關(guān)鍵是利用三角形中的余弦定理、橢圓的定義等構(gòu)造關(guān)系式,結(jié)合基本不等式求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1(-c,0),F(xiàn)2(c,0)為橢圓
x2
a2
+
y2
b2
=1
的兩個(gè)焦點(diǎn),P為橢圓上一點(diǎn)且
PF1
PF2
=c2
,則此橢圓離心率的取值范圍是( �。�
A、[
3
3
,1)
B、[
1
3
,
1
2
]
C、[
3
3
2
2
]
D、(0,
2
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1(-c,0),F(xiàn)2(c,0)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),過(guò)點(diǎn)F1作傾斜角為θ的動(dòng)直線l交橢圓于A,B兩點(diǎn).當(dāng)θ=
π
4
時(shí),
AF1
=(2-
3
)
F1B
,且|AB|=3.
(1)求橢圓的離心率及橢圓的標(biāo)準(zhǔn)方程;
(2)求△ABF2面積的最大值,并求出使面積達(dá)到最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1(-c,0),F(xiàn)2(c,0)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn),過(guò)點(diǎn)F1作傾斜角為60° 的直線l交橢圓于A,B兩點(diǎn),ABF2的內(nèi)切圓的半徑為
2
3
7
c
(I)求橢圓的離心率;   
(II)若|AB|=8
2
,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)一模)已知F1(-c,0),F(xiàn)2(c,0)分別是雙曲線C1
x2
a2
-
y2
b2
=1
(a>0,b>0)的兩個(gè)焦點(diǎn),雙曲線C1和圓C2:x2+y2=c2的一個(gè)交點(diǎn)為P,且2∠PF1F2=∠PF2F1,那么雙曲線C1的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1(-c,0),F(xiàn)2(c,0) (c>0)是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),圓M的方程是(x-
5
4
c)2+y2=
9c2
16

(1)若P是圓M上的任意一點(diǎn),求證:
|PF1|
|PF2|
是定值;
(2)若橢圓經(jīng)過(guò)圓上一點(diǎn)Q,且cos∠F1QF2=
3
5
,求橢圓的離心率;
(3)在(2)的條件下,若|OQ|=
34
2
,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案