【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差

x (℃)

10

11

13

12

8

6

就診人數(shù)

y(個(gè))

22

25

29

26

16

12

該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)請(qǐng)根據(jù)2、3、4、5月的數(shù)據(jù),求出y關(guān)于x的線性回歸方程 ;

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?

(參考公式:

參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,112+132+122+82=498.

【答案】(1) (2)線性回歸方程是理想的.

【解析】試題分析:(1)根據(jù)給出的公式計(jì)算回歸方程.(2)根據(jù)(1)中的回歸方程計(jì)算預(yù)測(cè)值,看它與實(shí)際值的差是否不超過(guò)2即可.

解析:(1)由數(shù)據(jù)求得 ,由公式求得,再由,所以關(guān)于的線性回歸方程為.

(2)當(dāng)時(shí), ;同樣,當(dāng)時(shí), , ,所以,該小組所得線性回歸方程是理想的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,的中點(diǎn).

求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市電視臺(tái)為了解市民對(duì)我市舉辦的春節(jié)文藝晚會(huì)的關(guān)注情況,組織了一次抽樣調(diào)查,下面是調(diào)查中

的其中一個(gè)方面:

按類(lèi)型用分層抽樣的方法抽取份問(wèn)卷,其中屬“看直播”的問(wèn)卷有份.

(1)求的值;

(2)為了解市民為什么不看的一些理由,用分層抽樣的方法從“不看”問(wèn)卷中抽取一個(gè)容量為的樣本,將該樣本看成一個(gè)總體,從中任取份,求至少有份是女性問(wèn)卷的概率;

(3)現(xiàn)從(2)所確定的總體中每次都抽取1份,取后不放回,直到確定出所有女性問(wèn)卷為止,記所要抽取的次數(shù)為,直接寫(xiě)出的所有可能取值(無(wú)需推理).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答題
(1)求函數(shù)f(x)=xlnx﹣(1﹣x)ln(1﹣x)在0<x≤ 上的最大值;
(2)證明:不等式x1x+(1﹣x)x 在(0,1)上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人玩猜數(shù)字游戲,先由甲心中想一個(gè)數(shù)字,記為,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為,其中,,就稱(chēng)甲乙心有靈犀”.現(xiàn)任意找兩人玩這個(gè)游戲,則他們心有靈犀的概率為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線 , )的左、右焦點(diǎn)分別為 ,過(guò) 的直線交雙曲線右支于 , 兩點(diǎn), , ,則雙曲線的離心率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)有以下說(shuō)法:

的極值點(diǎn).

②當(dāng)時(shí), 上是減函數(shù).

的圖像與處的切線必相交于另一點(diǎn).

④當(dāng)時(shí), 上是減函數(shù).

其中說(shuō)法正確的序號(hào)是_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知6只小白鼠有1只被病毒感染,需要通過(guò)對(duì)其化驗(yàn)病毒DNA來(lái)確定是否感染.下面是兩種化驗(yàn)方案:方案甲:逐個(gè)化驗(yàn),直到能確定感染為止.方案乙:將6只分為兩組,每組三個(gè),并將它們混合在一起化驗(yàn),若存在病毒DNA,則表明感染在這三只當(dāng)中,然后逐個(gè)化驗(yàn),直到確定感染為止;若結(jié)果不含病毒DNA,則在另外一組中逐個(gè)進(jìn)行化驗(yàn).
(1)求依據(jù)方案乙所需化驗(yàn)恰好為2次的概率.
(2)首次化驗(yàn)化驗(yàn)費(fèi)為10元,第二次化驗(yàn)化驗(yàn)費(fèi)為8元,第三次及其以后每次化驗(yàn)費(fèi)都是6元,列出方案甲所需化驗(yàn)費(fèi)用的分布列,并估計(jì)用方案甲平均需要化驗(yàn)費(fèi)多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù) 的圖象向左平移 個(gè)單位,再向下平移4個(gè)單位,得到函數(shù)g(x)的圖象,則函數(shù)f(x)的圖象與函數(shù)g(x)的圖象(
A.關(guān)于點(diǎn)(﹣2,0)對(duì)稱(chēng)
B.關(guān)于點(diǎn)(0,﹣2)對(duì)稱(chēng)
C.關(guān)于直線x=﹣2對(duì)稱(chēng)
D.關(guān)于直線x=0對(duì)稱(chēng)

查看答案和解析>>

同步練習(xí)冊(cè)答案