6.一個(gè)扇形OAB的面積為1平方厘米,它的周長為4厘米,則它的中心角是( 。
A.2弧度B.3弧度C.4弧度D.5弧度

分析 根據(jù)題意設(shè)出扇形的弧長與半徑,通過扇形的周長與面積,即可求出扇形的弧長與半徑,進(jìn)而根據(jù)公式α=$\frac{l}{r}$求出扇形圓心角的弧度數(shù).

解答 解:設(shè)扇形的弧長為:l,半徑為r,
所以2r+l=4,S面積=$\frac{1}{2}$lr=1,
所以解得:r=1,l=2,
所以扇形的圓心角的弧度數(shù)是α=$\frac{l}{r}$=$\frac{2}{1}$=2.
故選:A.

點(diǎn)評(píng) 本題考查弧度制下,扇形的面積及弧長公式的運(yùn)用,注意與角度制下的公式的區(qū)別與聯(lián)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.化簡 $\overrightarrow{AC}-\overrightarrow{BD}+\overrightarrow{CD}-\overrightarrow{AB}$=(  )
A.$\overrightarrow{AB}$B.$\overrightarrow{BC}$C.$\overrightarrow{DA}$D.$\overrightarrow 0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.研究某校女學(xué)生身高和體重的關(guān)系,用相關(guān)指數(shù)R2來刻畫回歸效果時(shí),如果可以敘述為“身高解釋了64%的體重變化,而隨機(jī)誤差貢獻(xiàn)了剩余的36%,所以身高對(duì)體重的效應(yīng)比隨機(jī)誤差的效應(yīng)大得多”,則相關(guān)指數(shù)R2≈0.64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.
(1)若f′(3)=0,求常數(shù)a的值;  
(2)若f(x)在(-∞,0)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知A(1,3),B(4,-1),則與向量$\overrightarrow{AB}$共線的單位向量為( 。
A.$({\frac{4}{5},\frac{3}{5}})$或$({-\frac{4}{5},\frac{3}{5}})$B.$({\frac{3}{5},-\frac{4}{5}})$或$({-\frac{3}{5},\frac{4}{5}})$C.$({-\frac{4}{5},-\frac{3}{5}})$或$({\frac{4}{5},\frac{3}{5}})$D.$({-\frac{3}{5},-\frac{4}{5}})$或$({\frac{3}{5},\frac{4}{5}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列說法正確的是①④.
①利用樣本點(diǎn)的散點(diǎn)圖可以直觀的判斷兩個(gè)變量的關(guān)系是否可以用線性關(guān)系表示.
②相關(guān)系數(shù)-1≤r≤1 且r 越大相關(guān)性越強(qiáng)
③用相關(guān)指數(shù)R2刻畫回歸方程的擬合效果,R2越小,擬合效果越好.
④殘差平方和越小的回歸模型,擬合效果越好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知空間四邊形ABCD,鏈接AC,BD,則$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$為( 。
A.$\overrightarrow{AD}$B.$\overrightarrow{BD}$C.$\overrightarrow{AC}$D.$\overrightarrow{0}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x^2},0≤x≤1\\ 1,1<x≤2\end{array}\right.$則定積分$\int_0^2{f(x)dx}$=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若z=4+3i(i為虛數(shù)單位),則$\frac{\overline{z}}{|z|}$=( 。
A.$\frac{3}{5}$-$\frac{4}{5}$iB.$\frac{3}{5}$+$\frac{4}{5}$iC.$\frac{4}{5}$+$\frac{3}{5}$iD.$\frac{4}{5}$-$\frac{3}{5}$i

查看答案和解析>>

同步練習(xí)冊答案