13.函數(shù)f(x)=x2+2x,x∈[-2,1]的值域為( 。
A.[-1,3]B.[4,8]C.[1,3]D.[2,3]

分析 根據(jù)二次函數(shù)的性質求解值域.

解答 解:函數(shù)f(x)=x2+2x,
開口向上,對稱軸x=-1,
∵x∈[-2,1],
∴[-2,-1]是單調遞增,[-1,1]是單調遞減.
當x=-1時,函數(shù)f(x)取得最小值為-1,
當x=1時,函數(shù)f(x)取得最大值為3,
∴函數(shù)f(x)=x2+2x,x∈[-2,1]的值域為[-1,3].
故選A.

點評 本題考查二次函數(shù)的單調性求解值域問題,屬于函數(shù)函數(shù)性質應用題,較容易.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.已知過拋物線方程y2=2px,過焦點F的直線l斜率為k(k>0)與拋物線交于A,B兩點,滿足$\frac{1}{{|{\overrightarrow{AF}}|}}+\frac{1}{{|{\overrightarrow{FB}}|}}=1$,又$\overrightarrow{AF}=2\overrightarrow{FB}$,則直線l的方程為y=2$\sqrt{2}$(x-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.某班現(xiàn)有學生40人,其中15人喜愛籃球運動,20人喜愛排球運動,另有10人對這兩項運動都不感興趣(即均不喜愛),則該班喜愛排球運動但不喜愛藍球運動的人數(shù)為15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.圓x2+y2=4與圓x2+y2-6x+8y-24=0的位置關系是( 。
A.相交B.相離C.內切D.外切

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設f(x)=$\left\{\begin{array}{l}{2{e}^{x-1},x<2}\\{lo{g}_{3}({x}^{2}-1),x≥2}\end{array}\right.$,則f[f(2)]的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)f(x)的定義域為R,對于任意的x∈R,有f(3+x)=-f(1-x),那么函數(shù)f(x)的圖象關于點(2,0)對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.四棱錐P-ABCD的底面為矩形,且PA⊥平面ABCD,AB=AD=$\frac{1}{2}$AP=2,E為側棱PC的中點,則異面直線AE與PD所成角的余弦值為( 。
A.$\frac{{\sqrt{30}}}{10}$B.$-\frac{{\sqrt{30}}}{10}$C.$\frac{{\sqrt{30}}}{5}$D.$-\frac{{\sqrt{30}}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)=x2+2x,x∈[-2,1]時的值域為[-1,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知集合A是同時滿足下列兩個性質的函數(shù)f(x)的全體.
①函數(shù)f(x)在其定義域上是單調函數(shù);
②f(x)的定義域內存在區(qū)間[a,b],使得f(x)在[a,b]上的值域為[$\frac{a}{2},\frac{2}$].
(1)判斷f(x)=x3是否屬于M,若是,求出所有滿足②的區(qū)間[a,b],若不是,說明理由;
(2)若是否存在實數(shù)t,使得h(x)=$\sqrt{x-1}+t∈M$,若存在,求實數(shù)t的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案