【題目】橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,焦點(diǎn)到短軸端點(diǎn)的距離為2,離心率為.
(Ⅰ)求該橢圓的方程;
(Ⅱ)若直線與橢圓交于, 兩點(diǎn)且,是否存在以原點(diǎn)為圓心的定圓與直線相切?若存在求出定圓的方程;若不存在,請說明理由
【答案】(1)橢圓方程為;(2)存在,方程為.
【解析】試題分析:(1)根據(jù)橢圓幾何性質(zhì)可知,橢圓焦點(diǎn)到短軸端點(diǎn)的距離為,即,又離心率,所以,則,所以橢圓方程為;(2)若直線斜率存在時,設(shè)直線: ,將直線方程與橢圓方程聯(lián)立,消去未知數(shù),得到關(guān)于的一元二次方程,設(shè), ,然后表示出韋達(dá)定理,由于,轉(zhuǎn)化為,即,坐標(biāo)表示為,于是得到關(guān)于的等式,再求原點(diǎn)O到直線AB的距離,與前面的等式聯(lián)立化簡、整理可以得出,最后得到圓的方程.
試題解析:(Ⅰ)設(shè)橢圓的半焦距為,
∵橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,焦點(diǎn)到短軸端點(diǎn)的距離為2,離心率為,
∴由題意,且,解得, .
∴所求橢圓方程為.
(Ⅱ)設(shè), ,若存在,則設(shè)直線: ,由,得
∴,且,由,知 ,代入得,原點(diǎn)到直線的距離,
當(dāng)的斜率不存在時, ,得, ,依然成立
∴點(diǎn)到直線的距離為定值.
∴定圓方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)(m∈Z)為偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù),若g(x)>2對任意的x∈R恒成立,求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下是解決數(shù)學(xué)問題的思維過程的流程圖:
在此流程圖中,①、②兩條流程線與“推理與證明”中的思維方法匹配正確的是( )
A. ①—分析法,②—反證法 B. ①—分析法,②—綜合法
C. ①—綜合法,②—反證法 D. ①—綜合法,②—分析法
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓:經(jīng)過橢圓:()的左右焦點(diǎn),,與橢圓在第一象限的交點(diǎn)為,且,,三點(diǎn)共線.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)與直線(為原點(diǎn))平行的直線交橢圓于,兩點(diǎn).當(dāng)的面積取到最大值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中裝有2個紅球,4個白球,除顏色外,它們的形狀、大小、質(zhì)量等完全相同
(1)采用不放回抽樣,先后取兩次,每次隨機(jī)取一個球,求恰好取到1個紅球,七個白球的概率;
(2)采用放回抽樣,每次隨機(jī)抽取一球,連續(xù)取3次,求至少有1次取到紅球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列滿足:,該數(shù)列的前三項(xiàng)分別加上1,1,3后成等比數(shù)列,且.
(1)求數(shù)列,的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)圖象上點(diǎn)處的切線方程與直線平行(其中),.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)在()上的最小值;
(Ⅲ)對一切, 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的有( )
①函數(shù)y=的定義域?yàn)?/span>{x|x≥1};
②函數(shù)y=x2+x+1在(0,+∞)上是增函數(shù);
③函數(shù)f(x)=x3+1(x∈R),若f(a)=2,則f(-a)=-2;
④已知f(x)是R上的增函數(shù),若a+b>0,則有f(a)+f(b)>f(-a)+f(-b).
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (為自然對數(shù)的底數(shù),), (,),
⑴若,.求在上的最大值的表達(dá)式;
⑵若時,方程在上恰有兩個相異實(shí)根,求實(shí)根的取值范圍;
⑶若,,求使得圖像恒在圖像上方的最大正整數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com