分析 (Ⅰ)比較兩圓圓心距|AB|與半徑和r1+r2、半徑差的絕對(duì)值|r1-r2|的大。
(Ⅱ)設(shè)公切線l切圓A、圓B的切點(diǎn)分別為E,F(xiàn),則四邊形AEFB是直角梯形.
解答 解:(Ⅰ)圓A:(x-1)2+(y-1)2=9 圓B:(x+1)2+(y+1)2=4,
兩圓心距|AB|=$\sqrt{{{(1+1)}^2}+{{(1+1)}^2}}=2\sqrt{2}$,
∵3-2<$|{AB}|=2\sqrt{2}<3+2$,
∴兩圓相交.
將兩圓方程左、右兩邊分別對(duì)應(yīng)相減得:4x+4y+5=0,
此即為過兩圓交點(diǎn)的直線方程.
設(shè)兩交點(diǎn)分別為C、D,則連心線AB垂直平分線段CD,
∵A到CD的距離$d=\frac{{|{4×1+4×1+5}|}}{{\sqrt{{4^2}+{4^2}}}}=\frac{13}{8}\sqrt{2}$,
∴$|{CD}|=2\sqrt{r_A^2-{d^2}}=\frac{{\sqrt{238}}}{4}$.
(Ⅱ)設(shè)公切線l切圓A、圓B的切點(diǎn)分別為E,F(xiàn),則四邊形AEFB是直角梯形.
∴${|{EF}|^2}={|{AB}|^2}-{({r_A}-{r_B})^2}=7$,∴$|{EF}|=\sqrt{7}$.
點(diǎn)評(píng) 本題考查圓與圓的位置關(guān)系,考查勾股定理的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | p∨(¬q) | C. | p∧(¬q) | D. | (¬p)∧q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com