【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)設(shè)函數(shù)(其中為的導(dǎo)函數(shù)),判斷在上的單調(diào)性;
(2)若函數(shù)在定義域內(nèi)無零點,試確定正數(shù)的取值范圍.
【答案】(1) 在上單調(diào)遞增.(2).
【解析】
(1)先分析得到,即得函數(shù)在上的單調(diào)性;(2)先利用導(dǎo)數(shù)求出
,再對a分三種情況討論,討論每一種情況下的零點情況得解.
(1)因為,則,
,
∴,
∴在上單調(diào)遞增.
(2)由知,
由(1)知在上單調(diào)遞增,且,可知當(dāng)時,,
則有唯一零點,設(shè)此零點為,
易知時,,單調(diào)遞增;時,,單調(diào)遞減,
故,其中.
令,
則,
易知在上恒成立,所以,在上單調(diào)遞增,且.
①當(dāng)時,,由在上單調(diào)遞增知,
則,由在上單調(diào)遞增,,所以,故在上有零點,不符合題意;
②當(dāng)時,,由的單調(diào)性知,則,此時有一個零點,不符合題意;
③當(dāng)時,,由的單調(diào)性知,則,此時沒有零點.
綜上所述,當(dāng)無零點時,正數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)若時,求證:當(dāng)時,;
(2)若函數(shù)有4個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在處取得極值,求的值;
(2)求在區(qū)間上的最小值;
(3)在(1)的條件下,若,求證:當(dāng)時,恒有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的焦點的坐標(biāo)為, 的坐標(biāo)為,且經(jīng)過點, 軸.
(1)求橢圓的方程;
(2)設(shè)過的直線與橢圓交于兩不同點,在橢圓上是否存在一點,使四邊形為平行四邊形?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點F到左頂點的距離為3.
(1)求橢圓C的方程;
(2)設(shè)O是坐標(biāo)原點,過點F的直線與橢圓C交于A,B兩點(A,B不在x軸上),若,延長AO交橢圓與點G,求四邊形AGBE的面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《算法統(tǒng)宗》全稱《新編直指算法統(tǒng)宗》,是屮國古代數(shù)學(xué)名著,程大位著.書中有如下問題:“今有五人均銀四十兩,甲得十兩四錢,戊得五兩六錢.問:次第均之,乙丙丁各該若干?”意思是:有5人分40兩銀子,甲分10兩4錢,戊分5兩6錢,且相鄰兩項差相等,則乙丙丁各分幾兩幾錢?(注:1兩等于10錢)( )
A.乙分8兩,丙分8兩,丁分8兩B.乙分8兩2錢,丙分8兩,丁分7兩8錢
C.乙分9兩2錢,丙分8兩,丁分6兩8錢D.乙分9兩,丙分8兩,丁分7兩
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】傳染病的流行必須具備的三個基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個環(huán)節(jié)必須同時存在,方能構(gòu)成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應(yīng)該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識和防控情況,用分層抽樣的方法從全體居民中抽出一個容量為100的樣本,統(tǒng)計樣本中每個人出行是否會佩戴口罩的情況,得到下面列聯(lián)表:
戴口罩 | 不戴口罩 | |
青年人 | 50 | 10 |
中老年人 | 20 | 20 |
(1)能否有的把握認為是否會佩戴口罩出行的行為與年齡有關(guān)?
(2)用樣本估計總體,若從該地區(qū)出行不戴口罩的居民中隨機抽取5人,求恰好有2人是青年人的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】百年大計,教育為本.某校積極響應(yīng)教育部號召,不斷加大拔尖人才的培養(yǎng)力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長班進行專項培訓(xùn).據(jù)統(tǒng)計有如下表格.(其中表示通過自主招生獲得降分資格的學(xué)生人數(shù),表示被清華、北大等名校錄取的學(xué)生人數(shù))
年份(屆) | 2014 | 2015 | 2016 | 2017 | 2018 |
41 | 49 | 55 | 57 | 63 | |
82 | 96 | 108 | 106 | 123 |
(1)通過畫散點圖發(fā)現(xiàn)與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(保留兩位有效數(shù)字)
(2)若已知該校2019年通過自主招生獲得降分資格的學(xué)生人數(shù)為61人,預(yù)測2019年高考該?既嗣5娜藬(shù);
(3)若從2014年和2018年考人名校的學(xué)生中采用分層抽樣的方式抽取出5個人回校宣傳,在選取的5個人中再選取2人進行演講,求進行演講的兩人是2018年畢業(yè)的人數(shù)的分布列和期望.
參考公式:,
參考數(shù)據(jù):,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個零點.
(1)求的取值范圍;
(2)是否存在實數(shù), 對于符合題意的任意,當(dāng) 時均有?
若存在,求出所有的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com